Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 15(1): 42, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468340

RESUMEN

BACKGROUND: The reproductive performance of chickens mainly depends on the development of follicles. Abnormal follicle development can lead to decreased reproductive performance and even ovarian disease among chickens. Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer. In recent years, the involvement of circRNAs in follicle development and atresia regulation has been confirmed. RESULTS: In the present study, we used healthy and atretic chicken follicles for circRNA RNC-seq. The results showed differential expression of circRALGPS2. It was then confirmed that circRALGPS2 can translate into a protein, named circRALGPS2-212aa, which has IRES activity. Next, we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1. CONCLUSIONS: Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.

2.
Theriogenology ; 219: 103-115, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422566

RESUMEN

Ovarian follicle development is an important physiological activity for females and makes great significance in maintaining female health and reproduction performance. The development of ovarian follicle is mainly affected by the granulosa cells (GCs), whose growth is regulated by a variety of factors. Here, we identified a novel circular RNA (circRNA) derived from the Ribosomal protein S19 (RPS19) gene, named circRPS19, which is differentially expressed during chicken ovarian follicle development. Further explorations identified that circRPS19 promotes GCs proliferation and steroid hormone synthesis. Furthermore, circRPS19 was found to target and regulate miR-218-5p through a competitive manner with endogenous RNA (ceRNA). Functionals investigation revealed that miR-218-5p attenuates GCs proliferation and steroidogenesis, which is opposite to that of circRPS19. In addition, we also confirmed that circRPS19 upregulates the expression of Inhibin beta B subunit (INHBB) by binding with miR-218-5p to facilitate GCs proliferation and steroidogenesis. Overall, this study revealed that circRPS19 regulates GCs development by releasing the repression of miR-218-5p on INHBB, which suggests a novel mechanism in respect to circRNA and miRNA regulation in ovarian follicle development.


Asunto(s)
MicroARNs , ARN Circular , Femenino , Animales , ARN Circular/genética , ARN Circular/metabolismo , Pollos/genética , Pollos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células de la Granulosa/metabolismo , Proliferación Celular , Esteroides/metabolismo
3.
RSC Adv ; 13(45): 31720-31727, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37908650

RESUMEN

A simple and portable paper-based analytical device was developed for visual and semiquantitative detection of ferric ion in real samples using green emitting carbon dots (CDs), which were prepared via microwave method using sodium citrate, urea and sodium hydroxide as raw materials and then loaded on the surface of paper substrate. When Fe3+ exists, the green fluorescence of CDs was quenched and significant color change from green to dark blue were observed, resulting the visual detection of Fe3+ with a minimum distinguishable concentration of 100 µM. By analyzing the intensity changes of green channels of test paper with the help of smartphone, the semiquantitative detection was realized within the range of 100 µM to 1200 µM. The proposed paper-based analytical devices have great application prospects in on site detection of Fe3+ in real samples.

4.
PLoS Genet ; 19(9): e1010923, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676887

RESUMEN

Circular RNAs (circRNAs) have been recognized as critical regulators of skeletal muscle development. Myocyte enhancer factor 2A (MEF2A) is an evolutionarily conserved transcriptional factor that regulates myogenesis. However, it remains unclear whether MEF2A produces functional circRNAs. In this study, we identified two evolutionarily conserved circular MEF2A RNAs (circMEF2As), namely circMEF2A1 and circMEF2A2, in chicken and mouse muscle stem cells. Our findings revealed that circMEF2A1 promotes myogenesis by regulating the miR-30a-3p/PPP3CA/NFATC1 axis, whereas circMEF2A2 facilitates myogenic differentiation by targeting the miR-148a-5p/SLIT3/ROBO2/ß-catenin signaling pathway. Furthermore, in vivo experiments demonstrated that circMEF2As both promote skeletal muscle growth. We also discovered that the linear MEF2A mRNA-derived MEF2A protein binds to its own promoter region, accelerating the transcription of MEF2A and upregulating the expression of both linear MEF2A and circMEF2As, forming a MEF2A autoregulated positive feedback loop. Moreover, circMEF2As positively regulate the expression of linear MEF2A by adsorbing miR-30a-3p and miR-148a-5p, which directly contribute to the MEF2A autoregulated feedback loop. Importantly, we found that mouse circMEF2As are essential for the myogenic differentiation of C2C12 cells. Collectively, our results demonstrated the evolution, function, and underlying mechanisms of circMEF2As in animal myogenesis, which may provide novel insight for both the farm animal meat industry and human medicine.


Asunto(s)
MicroARNs , ARN Circular , Animales , Humanos , Ratones , Diferenciación Celular , Factores de Transcripción MEF2/genética , MicroARNs/genética , Desarrollo de Músculos/genética , ARN Circular/genética
5.
Anal Bioanal Chem ; 415(23): 5769-5779, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37466680

RESUMEN

Dual-emissive fluorescent carbon dots (CDs) were prepared through the solvothermal method with citric acid and urea as raw materials and dimethylformamide as the solvent. Two emission peaks were observed at 465 nm and 630 nm. Hg2+ could selectively quench the fluorescence at 630 nm, but the fluorescence intensity at 465 nm was less affected. Accordingly, a ratiometric fluorescence sensor for Hg2+ detection was developed, with a linear detection range of 0.5-40 µM and a limit of detection (LOD) of 37 nM. The dual-emissive CDs were loaded on the surface of the filter paper to fabricate Hg2+ detection test paper. The color of the test paper could be changed from pink purple to blue by the addition of Hg2+, and thus the qualitative and quantitative detection of Hg2+ could be realized. The concentration distinguishable by the naked eye reached 50 µM, and the quantitative detection range was 5-10,000 µM. This method shows excellent selectivity for Hg2+ and can be used to detect Hg2+ in real water samples, providing a highly potential sensing platform for rapid on-site detection of mercury ions.

6.
Front Immunol ; 13: 925256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874672

RESUMEN

The growing period is a critical period for growth and development in laying hens. During this period, chicks grow rapidly, but are accompanied by unstable digestive function, incomplete organ development, and high mortality. Small peptide, a feed additive, which has been proved to promote intestinal development and immunity in poultry. In order to elucidate the effects of small peptides on growth performance, immunity, antioxidant capacity, and intestinal health of growing laying hens, a total of 900 Tianfu green shell laying hens (1-day-old) were randomly divided into 5 treatments with 6 replicates of 30 birds each in this 18-week trial. Dietary treatments included a corn-soybean meal-based diet supplemented with 0 g/kg, 1.5 g/kg, 3.0 g/kg, 4.5 g/kg and 6.0 g/kg small peptide, respectively. The results showed that the supplementation of small peptides significantly increased growth rate (P<0.05) in laying hens, as well as elevated the serum immunoglobulins (P<0.05) and antioxidant indices (P<0.05), however, it decreased inflammation parameters (P<0.05). The supplementation of small peptides enhanced the intestinal function by promoting gut development (P<0.05) and improving gut integrity (P<0.05), barrier function (P<0.05) and the diversity of gut microbiota (P<0.05) in the growing hens. The best performance was recorded among the hens fed 4.5 g/kg level of small peptide. Taken together, these results showed that small peptide supplementation could improve the economic value of growing hens by promoting growth rate, disease resistance, and the optimal amount of addition for Tianfu green shell laying hens was 4.5 g/kg.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Alimentación Animal/análisis , Animales , Antioxidantes/farmacología , Suplementos Dietéticos , Femenino , Péptidos/farmacología
7.
Front Cell Dev Biol ; 9: 748844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692701

RESUMEN

Circular RNA (circRNA) is a class of endogenous non-coding RNAs without 5' and 3' ends; an increasing number of studies show that circRNA is involved in skeletal muscle development. From our previous sequencing data, the circRNAome in breast muscle of two chicken lines with a distinct rate of muscle development, which included a fast muscle growing broiler (FMGB) and a slow muscle growing layer (SMGL), we found a novel differentially expressed circRNA generated by intersectin 2 (ITSN2) gene (named circITSN2). We verified that circITSN2 is a skeletal muscle-enriched circRNA that promotes chicken primary myoblast (CPM) proliferation and differentiation. Further molecular mechanism analysis of circITSN2 in chicken myogenesis was performed, and we found circITSN2 directly targeting miR-218-5p. Besides, miR-218-5p inhibits CPM proliferation and differentiation, which is contrary to circITSN2. Commonly, circRNAs act as a miRNA sponge to alleviate the inhibition of miRNAs on mRNAs. Thus, we also identified that a downstream gene LIM domain 7 (LMO7) was inhibited by miR-218-5p, while circITSN2 could block the inhibitory effect of miR-218-5p by targeting it. Functional analysis revealed that LMO7 also accelerates CPM proliferation and differentiation, which was similar to circITSN2 but contrary to miR-218-5p. Taken together, these results suggested that circITSN2 promotes chicken embryonic skeletal muscle development via relieving the inhibition of miR-218-5p on LMO7. Our findings revealed a novel circITSN2/miR-218-5p/LMO7 axis in chicken embryonic skeletal muscle development, which expands our understanding of the complex muscle development regulatory network.

8.
Front Cell Dev Biol ; 9: 736749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660593

RESUMEN

Skeletal muscle is a heterogeneous tissue that is essential for initiating movement and maintaining homeostasis. The genesis of skeletal muscle is an integrative process that lasts from embryonic development to postnatal stages, which is carried out under the modulation of many factors. Recent studies have shown that circular RNAs (circRNAs), a class of non-coding RNAs, are involved in myogenesis. However, more circRNAs and their mechanisms that may regulate skeletal muscle development remain to be explored. Through in-depth analysis of our previous RNA-Seq data, circFNDC3AL was found to be a potentially functional circRNA highly expressed during embryonic development of chicken skeletal muscle. Therefore, in this study, we investigated the effect of circFNDC3AL on skeletal muscle development in chickens and found that circFNDC3AL promoted chicken skeletal muscle satellite cell (SMSC) proliferation and differentiation. To gain a thorough understanding of the exact modulatory mechanisms of circFNDC3AL in chicken skeletal muscle development, we performed target miRNA analysis of circFNDC3AL and found that circFNDC3AL has a binding site for miR-204. Subsequently, we demonstrated that miR-204 inhibited chicken SMSC proliferation and differentiation, which showed the opposite functions of circFNDC3AL. Furthermore, we identified the miR-204 target gene B-cell CLL/lymphoma 9 (BCL9) and validated that miR-204 had an inhibitory effect on BCL9, while the negative effect could be relieved by circFNDC3AL. In addition, we verified that BCL9 performed the same positive functions on chicken SMSC proliferation and differentiation as circFNDC3AL, as opposed to miR-204. In conclusion, our study identified a circRNA circFNDC3AL that upregulates BCL9 expression to promote the proliferation and differentiation of chicken SMSCs by binding to miR-204.

9.
Animals (Basel) ; 11(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34438852

RESUMEN

Skeletal muscle plays important roles in animal locomotion, metabolism, and meat production in farm animals. Current studies showed that non-coding RNAs, especially the circular RNA (circRNA) play an indispensable role in skeletal muscle development. Our previous study revealed that several differentially expressed circRNAs among fast muscle growing broilers (FMGB) and slow muscle growing layers (SMGL) may regulate muscle development in the chicken. In this study, a novel differentially expressed circPPP1R13B was identified. Molecular mechanism analysis indicated that circPPP1R13B targets miR-9-5p and negatively regulates the expression of miR-9-5p, which was previously reported to be an inhibitor of skeletal muscle development. In addition, circPPP1R13B positively regulated the expression of miR-9-5p target gene insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) and further activated the downstream insulin like growth factors (IGF)/phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway. The results also showed that the knockdown of circPPP1R13B inhibits chicken skeletal muscle satellite cells (SMSCs) proliferation and differentiation, and the overexpression of circPPP1R13B promotes the proliferation and differentiation of chicken SMSCs. Furthermore, the overexpression of circPPP1R13B could block the inhibitory effect of miR-9-5p on chicken SMSC proliferation and differentiation. In summary, our results suggested that circPPP1R13B promotes chicken SMSC proliferation and differentiation by targeting miR-9-5p and activating IGF/PI3K/AKT signaling pathway.

10.
Chemosphere ; 263: 128129, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297117

RESUMEN

The catalysts' redox capacity and surface acidity was important during the catalytic combustion of chlorobenzene (CB). CeO2 showed great attractiveness due to its high oxygen storage capacity. Furthermore, the increase of acidity on the catalyst surface could improve the resistance to the chlorine poisoning. In this work, the silicotungstic (HSiW) modified CeO2 catalysts prepared by four cerium salts and exhibited the different morphologies and catalytic activity. The HSiW modified CeO2 catalyst prepared by Ce(CH3COO)3 (Cat-A) exhibited the best catalytic activity due to its abundant surface weak acid sites, more Ce3+ species and surface adsorption oxygen. The HSiW mainly located on the CeO2 (111) planes of the Cat-A, which was conducive to redox property of CeO2, thus promoting the deep oxidation of CB. Meanwhile the redox ability together with the weak acidity influenced the catalytic efficiency at low temperature. And the redox ability played a major role at high temperature. In addition, the Cat-A still possessed high stability and water resistance and maintained high activity after continuous catalytic oxidation of CB at 235 and 295 °C for 100h, exhibiting the possibility of industrial application.


Asunto(s)
Cerio , Catálisis , Clorobencenos , Oxidación-Reducción , Silicatos , Compuestos de Tungsteno
12.
Front Cell Dev Biol ; 8: 522588, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240871

RESUMEN

Circular RNAs (circRNAs) are recognized as functional non-coding transcripts; however, emerging evidence has revealed that some synthetic circRNAs generate functional peptides or proteins. Additionally, the diverse biological functions of circRNAs include acting as miRNA-binding sponges, RNA-binding protein regulators, and protein translation templates. Previously, we found that circular RNA circFAM188B is a stable circular RNA and differentially expressed between broiler chickens and layers during embryonic skeletal muscle development. In this study, we found that circFAM188B exhibited a unique pattern of sharply decreased expression from embryonic day 10 (E10) to Day 35 (D35) after hatching. Our experimental results showed that circFAM188B promotes the proliferation, but inhibits the differentiation of chicken skeletal muscle satellite cells (SMSCs). Bioinformatic analysis revealed circFAM188B contain an opening reading frame (ORF) which translate into circFAM188B-103aa, internal ribosome entry site (IRES) analysis further confirmed the coding potential of circFAM188B. In addition, western blot assay detected a flag tagged circFAM188B-103aa, and several peptides of circFAM188B-103aa were detected by LC-MS/MS analysis. We further verified that the role of circFAM188B-103aa in chicken myogenesis is consistent with that of its parent transcript circFAM188B, which facilitates proliferation, but represses differentiation of chicken SMSC. Taken together, these results suggested that a novel protein circFAM188B-103aa encoded by circFAM188B that promotes the proliferation but inhibits the differentiation of chicken SMSCs.

13.
Cell Tissue Res ; 381(3): 479-492, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32696215

RESUMEN

Immunoglobulin superfamily containing leucine-rich repeat (Islr) contains an Ig-like domain, an LRR motif, and a transmembrane domain and is highly expressed in various chicken tissues. Although Islr has known roles in muscle regeneration, its role in the regulation of muscle atrophy has not been studied. In this study, we constructed Islr-silenced or Islr-overexpressed myoblasts to investigate its role during the differentiation of myoblasts into myotubes. The results showed that Islr was highly expressed in chicken skeletal muscle tissue and regulated myoblast differentiation, but not proliferation. Islr regulated the expression of atrophy-related genes including atrogin-1 and MuRF-1, and could rescue dexamethasone-induced atrophy in myoblasts and myotubes. Western blot analysis indicated that Islr participates in myoblast atrophy through IGF/PI3K/AKT-FOXO signaling. Meanwhile, the expression of caspase-8 and caspase-9 increased in Islr-silenced groups, indicating its role in cell viability. Taken together, these data suggested that Islr plays an important role in myoblasts differentiation, and which can alleviate skeletal muscle atrophy and prevents muscle cell apoptosis via IGF/PI3K/AKT-FOXO signaling pathway.


Asunto(s)
Inmunoglobulinas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Atrofia Muscular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Transducción de Señal , Transfección
14.
Front Genet ; 11: 512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582277

RESUMEN

As bioinformatic approaches have been developed, it has been demonstrated that microRNAs (miRNAs) are involved in the formation of muscles and play important roles in regulation of muscle cell proliferation and differentiation. Previously, it has been demonstrated that miR-148a-3p is one of the most abundant miRNAs in chicken skeletal muscle. Here, we build on that work and demonstrate that miR-148a-3p is important in the control of differentiation of chicken skeletal muscle satellite cells (SMSCs). Elevated expression of miR-148a-3p significantly promoted differentiation and inhibited apoptosis of SMSCs but did not affect proliferation. Furthermore, it was observed that the mesenchyme homeobox 2 (Meox2) is a target gene of miR-148a-3p and that miR-148a-3p can down-regulate expression of Meox2, which promote differentiation of SMSCs and suppress apoptosis. Furthermore, miR-148a-3p overexpression encouraged activation of the PI3K/AKT signaling pathway, which could be recovered by overexpression of Meox2. Overall, these findings suggest that microRNA-148a-3p is a potent promoter of myogenesis via direct targeting of Meox2 and increase of the PI3K/AKT signaling pathway in chicken SMSCs.

15.
Int J Mol Sci ; 21(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380777

RESUMEN

MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. Chicken is an optimal model to study skeletal muscle formation because its developmental anatomy is similar to that of mammals. In this study, we identified potential miRNAs in the breast muscle of broilers and layers at embryonic day 10 (E10), E13, E16, and E19. We detected 1836 miRNAs, 233 of which were differentially expressed between broilers and layers. In particular, miRNA-200a-3p was significantly more highly expressed in broilers than layers at three time points. In vitro experiments showed that miR-200a-3p accelerated differentiation and proliferation of chicken skeletal muscle satellite cells (SMSCs) and inhibited SMSCs apoptosis. The transforming growth factor 2 (TGF-ß2) was identified as a target gene of miR-200a-3p, and which turned out to inhibit differentiation and proliferation, and promote apoptosis of SMSCs. Exogenous TGF-ß2 increased the abundances of phosphorylated SMAD2 and SMAD3 proteins, and a miR-200a-3p mimic weakened this effect. The TGFß2 inhibitor treatment reduced the promotional and inhibitory effects of miR-200a-3p on SMSC differentiation and apoptosis, respectively. Our results indicate that miRNAs are abundantly expressed during embryonic skeletal muscle development, and that miR-200a-3p promotes SMSC development by targeting TGF-ß2 and regulating the TGFß2/SMAD signaling pathway.


Asunto(s)
MicroARNs/genética , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Apoptosis/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , ARN Mensajero/genética
16.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121275

RESUMEN

MicroRNAs are evolutionarily conserved, small non-coding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. We previously found that miR-9-5p is abundantly expressed in chicken skeletal muscle. Here, we demonstrate a new role for miR-9-5p as a myogenic microRNA that regulates skeletal muscle development. The overexpression of miR-9-5p significantly inhibited the proliferation and differentiation of skeletal muscle satellite cells (SMSCs), whereas miR-9-5p inhibition had the opposite effect. We show that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is a target gene of miR-9-5p, using dual-luciferase assays, RT-qPCR, and Western Blotting, and that it promotes proliferation and differentiation of SMSCs. In addition, we found that IGF2BP3 regulates IGF-2 expression, using overexpression and knockdown studies. We show that Akt is activated by IGF2BP3 and is essential for IGF2BP3-induced cell development. Together, our results indicate that miR-9-5p could regulate the proliferation and differentiation of myoblasts by targeting IGF2BP3 through IGF-2 and that this activity results in the activation of the PI3K/Akt signaling pathway in skeletal muscle cells.


Asunto(s)
Diferenciación Celular/genética , Pollos/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Satélite del Músculo Esquelético/citología , Animales , Secuencia de Bases , Línea Celular , Proliferación Celular/genética , MicroARNs/genética , Modelos Biológicos , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal
17.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979369

RESUMEN

CSRP3/MLP (cysteine-rich protein 3/muscle Lim protein), a member of the cysteine-rich protein family, is a muscle-specific LIM-only factor specifically expressed in skeletal muscle. CSRP3 is critical in maintaining the structure and function of normal muscle. To investigate the mechanism of disease in CSRP3 myopathy, we performed siRNA-mediated CSRP3 knockdown in chicken primary myoblasts. CSRP3 silencing resulted in the down-regulation of the expression of myogenic genes and the up-regulation of atrophy-related gene expressions. We found that CSRP3 interacted with LC3 protein to promote the formation of autophagosomes during autophagy. CSRP3-silencing impaired myoblast autophagy, as evidenced by inhibited autophagy-related ATG5 and ATG7 mRNA expression levels, and inhibited LC3II and Beclin-1 protein accumulation. In addition, impaired autophagy in CSRP3-silenced cells resulted in increased sensitivity to apoptosis cell death. CSRP3-silenced cells also showed increased caspase-3 and caspase-9 cleavage. Moreover, apoptosis induced by CSRP3 silencing was alleviated after autophagy activation. Together, these results indicate that CSRP3 promotes the correct formation of autophagosomes through its interaction with LC3 protein, which has an important role in skeletal muscle remodeling and maintenance.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Proteínas con Dominio LIM/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Mioblastos/metabolismo , Animales , Apoptosis/genética , Autofagosomas/ultraestructura , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Caspasas/metabolismo , Células Cultivadas , Embrión de Pollo , Pollos , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ontología de Genes , Silenciador del Gen , Proteínas con Dominio LIM/genética , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Distrofias Musculares/genética , Mioblastos/ultraestructura , ARN Interferente Pequeño , RNA-Seq
18.
Animals (Basel) ; 10(1)2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31947925

RESUMEN

The development of skeletal muscle satellite cells (SMSCs) is a complex process that could be regulated by many genes. Previous studies have shown that Histone Deacetylase 4 (HDAC4) plays a critical role in cell proliferation, differentiation, and apoptosis in mouse. However, the function of HDAC4 in chicken muscle development is still unknown. Given that chicken is a very important meat-producing animal that is also an ideal model to study skeletal muscle development, we explored the functions of HDAC4 in chicken SMSCs after the interference of HDAC4. The results showed that HDAC4 was enriched in embryonic skeletal muscle, and it was highly expressed in embryonic muscle than in postnatal muscles. Meanwhile, knockdown of HDAC4 could significantly inhibit the proliferation and differentiation of chicken SMSCs but had no effect on the apoptosis of SMSCs as observed in a series of experiment conducted in vitro. These results indicated that HDAC4 might play a positive role in chicken skeletal muscle growth and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...