Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 178: 50-67, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382832

RESUMEN

Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-ß1) (OHA-DA-PAM/CMP/TGF-ß1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-ß1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-ß1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-ß1), was developed to facilitate AF regeneration. The sustained release of TGF-ß1 enhanced AF cell recruitment, while both TGF-ß1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-ß1 composite hydrogel for repairing AF defects.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Disco Intervertebral , Ratas , Animales , Anillo Fibroso/patología , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Hidrogeles/química , Adhesivos/farmacología , Preparaciones de Acción Retardada/farmacología , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Colágeno/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1171781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529608

RESUMEN

Objectives: The current study aimed to investigate the pathogenesis of obesity-induced impaired bone mass accrual and the impact of dietary intervention on bone density in the mouse model of obesity. Methods: Mice were fed with chow diet (CD) for 10 months, high-fat-diet (HFD) for 10 months, or HFD for 6 months then transferred to chow diet for 4 months (HFDt). Results: Weight loss and decreased intrahepatic lipid accumulation were observed in mice following dietary intervention. Additionally, HFD feeding induced bone mass accrual, while diet intervention restrained trabecular bone density. These changes were further reflected by increased osteogenesis and decreased adipogenesis in HFDt mice compared to HFD mice. Furthermore, HFD feeding decreased the activity of the Wingless-related integration site (Wnt)-ß-Catenin signaling pathway, while the Wnt signaling was augmented by diet intervention in the HFDt group. Conclusions: Our findings suggest that a HFD inhibits bone formation and that dietary intervention reverses this inhibition. Furthermore, the dietary intervention was able to compensate for the suppressed increase in bone mass to a level comparable to that in the CD group. Our study suggests that targeting the Wnt signaling pathway may be a potential approach to treat obesity-induced impaired bone mass accrual.


Asunto(s)
Médula Ósea , Obesidad , Ratones , Animales , Ratones Obesos , Médula Ósea/metabolismo , Obesidad/metabolismo , Osteogénesis , Vía de Señalización Wnt
3.
J Orthop Translat ; 34: 42-59, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35615641

RESUMEN

Background: Traumatic Heterotopic Ossification (tHO) is one of complications of elbow fractures to the detriment of patients' rehabilitation, and the severity of tHO corresponds to the size of ectopic bone. It has yet to be elucidated which proteins and pathways underlying the progression of tHO, and biomarkers to predict the severity of tHO at early stage of the disease also need further investigation. Methods: In this study, a new rat model with distinct volume of ectopic bone was established first. Then a data-independent acquisition proteomics approach was used to investigate injured site tissues sequentially obtained from these rats (2, 7, 14, and 28 days post-injury). Differentially expressed analysis, functional annotation and co-expression analysis and protein-protein interaction network were performed to explore the pathways and hub proteins in the tHO progression. Clinical samples from a nest case-control study were used to validate the selected proteins for predicting the severity of tHO. Results: The Achilles Tenotomy (AT) induced significantly larger sizes of ectopic bone compared to Partial Achilles Tenotomy (PAT) in rat models. A total of 3547 quantifiable proteins were screened for differential expression analysis among the AT, PAT and control groups. The hierarchical clustering and expression pattern analysis revealed more apparent difference in the pathways such as oxidative phosphorylation, mitochondrial function, and sirtuin signaling between AT and PAT group at the early stage (2 dpi) of tHO. The co-expression analysis identified five hub proteins, UBA1, EIF3E, RPL17, RPL27, and RPS28. qPCR assay, immunoblot assay and immunohistochemistry assay verified that these proteins had higher expression level in the tissue samples of clinically relevant HO patients and clinically irrelevant HO patients than HO negative patients. Conclusion: The new established animal model and proteome profile could serve as a solid foundation for the comprehensive investigation of the progression of traumatic heterotopic ossification. And the identified 5 proteins (UBA1, EIF3E, RPL17, RPL27, and RPS28) may serve as potential biomarkers to predict the severity of tHO. The translational potential of this article: The proteins identified in this study may be the potential biomarkers and therapeutic targets for predicting and treating the tHO at early stage.

4.
BMC Musculoskelet Disord ; 22(1): 1000, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34847881

RESUMEN

BACKGROUND: Heterotopic ossification (HO) can limit joint activity, causes ankylosis and impairs the function and rehabilitation of patients. Endothelial to mesenchymal transition (EndMT) plays an important role in the pathogenesis of HO, and high expression of SMAD7(Mothers Against Decapentaplegic Homolog 7) in endothelial cells can effectively reverse the TGF-ß1 mediated EndMT. This article studied an appropriately engineered exosome with high biocompatibility and good targeting property to administrate SMAD7 gene therapy to inhibit the EndMT. METHODS: Exosomes from mouse aortic endothelial cells were cultured and harvested. DSPE-PEG and antibody CD34 were combined to exosomes to synthesize the endothelial cell targeting exosome vector (Exosome-DSPE-PEG-AbCD34). The biocompatibility, stability, targeting and cell internalization of exosome vector were tested, then the Exosome-DSPE-PEG-AbCD34 was loaded with Smad7 plasmid and administrated to MAECs to examine its therapeutic effect on EndMT of MAEC mediated by TGF-ß1. RESULTS: The Exosome-DSPE-PEG-AbCD34 has no impact on MAEC cell viability at high concentration, and exosome-DSPE-PEG-AbCD34 could be stably stored at 4°C and 37°C for at least 8 days. Exosome-DSPE-PEG-AbCD34 has better targeting property to MAEC cells and can enter into the cells more effectively. The Exosome-DSPE-PEG-AbCD34-Smad7 could significantly increase the level of SMAD7, decrease the expression of TGF-ß1, and effectively reverse the EndMT of MAEC mediated by TGF- ß1 in MAEC cells. CONCLUSIONS: The synthesized Exosome-DSPE-PEG-AbCD34-Smad7 has good biological properties and can effectively reverse the EndMT of MAEC mediated by TGF-ß1. Thus, Exosome-DSPE-PEG-AbCD34-Smad7 may has the potential for the prevention and treatment of HO.


Asunto(s)
Células Endoteliales , Transición Epitelial-Mesenquimal , Exosomas , Terapia Genética , Osificación Heterotópica/terapia , Animales , Células Cultivadas , Ratones , Factor de Crecimiento Transformador beta1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA