Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935417

RESUMEN

The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × âˆš13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.

2.
Nano Lett ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917425

RESUMEN

The interfacial FeSe/TiO2-δ coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO3(001)-(√13 × âˆš13)-R33.7° surface. Our results disclosed the out-of-plane Se-Fe-Se triple layer gradient variation, switched DOS for Fe sites on and off TiO5□, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × âˆš13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle-hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.

3.
Natl Sci Rev ; 11(3): nwad213, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38312379

RESUMEN

Superconductivity transition temperature (Tc) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at Tc, which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO3(001), although the pairing temperature (Tp) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO3(001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width ΔTc ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO3(001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.

4.
Nat Commun ; 14(1): 5302, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652936

RESUMEN

Determining the pairing symmetry of single-layer FeSe on SrTiO3 is the key to understanding the enhanced pairing mechanism. It also guides the search for superconductors with high transition temperatures. Despite considerable efforts, it remains controversial whether the symmetry is the sign-preserving s- or the sign-changing s±-wave. Here, we investigate the pairing symmetry of single-layer FeSe from a topological point of view. Using low-temperature scanning tunneling microscopy/spectroscopy, we systematically characterize the superconducting states at edges and corners of single-layer FeSe. The tunneling spectra collected at edges and corners show a full energy gap and a substantial dip, respectively, suggesting the absence of topologically non-trivial edge and corner modes. According to our theoretical calculations, these spectroscopic features can be considered as strong evidence for the sign-preserving s-wave pairing in single-layer FeSe.

6.
Rev Sci Instrum ; 91(1): 013904, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32012528

RESUMEN

We present a newly developed facility comprising a combinatorial laser molecular beam epitaxy system and an in situ scanning tunneling microscope (STM). This facility aims at accelerating the materials research in a highly efficient way by advanced high-throughput film synthesis techniques and subsequent fast characterization of surface morphology and electronic states. Compared with uniform films deposited by conventional methods, the so-called combinatorial thin films will be beneficial in determining the accurate phase diagrams of different materials due to the improved control of parameters such as chemical substitution and sample thickness resulting from a rotary-mask method. A specially designed STM working under low-temperature and ultrahigh vacuum conditions is optimized for the characterization of combinatorial thin films in an XY coarse motion range of 15 mm × 15 mm with submicrometer location precision. The overall configuration and some key aspects such as the sample holder design, scanner head, and sample/tip/target transfer mechanism are described in detail. The performance of the device is demonstrated by synthesizing high-quality superconducting FeSe thin films with gradient thickness and imaging surfaces of highly oriented pyrolytic graphite, Au (111), Bi2Sr2CaCu2O8+δ (BSCCO), and FeSe. In addition, we also have obtained clean noise spectra of tunneling junctions and the superconducting energy gap of BSCCO. The successful manufacturing of such a facility opens a new window for the next generation equipment designed for experimental materials research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...