Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33933454

RESUMEN

Hydrophobins are surface-active proteins produced by filamentous fungi. The amphiphilic structure of hydrophobins is very compact, containing a distinct hydrophobic patch on one side of the molecule, locked by four intramolecular disulfide bridges. Hydrophobins form dimers and multimers in solution to shield these hydrophobic patches from water exposure. Multimer formation in solution is dynamic, and hydrophobin monomers can be exchanged between multimers. Unlike class I hydrophobins, class II hydrophobins assemble into highly ordered films at the air-water interface. In order to increase our understanding of the strength and nature of the interaction between hydrophobins, we used atomic force microscopy for single molecule force spectroscopy to explore the molecular interaction forces between class II hydrophobins from Trichoderma reesei under different environmental conditions. A genetically engineered hydrophobin variant, NCys-HFBI, enabled covalent attachment of proteins to the apex of the atomic force microscopy cantilever tip and sample surfaces in controlled orientation with sufficient freedom of movement to measure molecular forces between hydrophobic patches. The measured rupture force between two assembled hydrophobins was ∼31 pN, at a loading rate of 500 pN/s. The results indicated stronger interaction between hydrophobins and hydrophobic surfaces than between two assembling hydrophobin molecules. Furthermore, this interaction was stable under different environmental conditions, which demonstrates the dominance of hydrophobicity in hydrophobin-hydrophobin interactions. This is the first time that interaction forces between hydrophobin molecules, and also between naturally occurring hydrophobic surfaces, have been measured directly at a single-molecule level.


Asunto(s)
Proteínas Fúngicas/química , Interacciones Hidrofóbicas e Hidrofílicas , Imagen Individual de Molécula , Hypocreales , Propiedades de Superficie , Agua/química
2.
Anal Bioanal Chem ; 409(11): 2767-2776, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28229174

RESUMEN

We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s-1) indicates low dissociation of the sgc8c-PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per µm2. Graphical Abstract The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s-1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per µm2 in the cell membrane.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Microscopía de Fuerza Atómica/métodos , Imagen Molecular/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Linfocitos T/metabolismo , Sitios de Unión , Técnicas Biosensibles/métodos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Humanos , Células Jurkat , Unión Proteica , Linfocitos T/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...