Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
MAGMA ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105952

RESUMEN

OBJECTIVE: To demonstrate the potential of a double angle stimulated echo (DA-STE) method for fast and accurate "full" homogeneous Helmholtz-based electrical properties tomography using a simultaneous B 1 + magnitude and transceive phase measurement. METHODS: The combination of a spin and stimulated echo can be used to yield an estimate of both B 1 + magnitude and transceive phase and thus provides the means for "full" EPT reconstruction. An interleaved 2D acquisition scheme is used for rapid acquisition. The method was validated in a saline phantom and compared to a double angle method based on two single gradient echo acquisitions (GRE-DAM). The method was evaluated in the brain of a healthy volunteer. RESULTS: The B 1 + magnitude obtained with DA-STE showed excellent agreement with the GRE-DAM method. Conductivity values based on the "full" EPT reconstruction also agreed well with the expectations in the saline phantom. In the brain, the method delivered conductivity values close to literature values. DISCUSSION: The method allows the use of the "full" Helmholtz-based EPT reconstruction without the need for additional measurements. As a result, quantitative conductivity values are improved compared to phase-based EPT reconstructions. DA-STE is a fast complex- B 1 + mapping technique that could render EPT clinically relevant at 3 T.

2.
Cancers (Basel) ; 16(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39199642

RESUMEN

Glutamine (Gln) is a non-essential amino acid that is involved in the development and progression of several malignancies, including prostate cancer (PCa). While Gln is non-essential for non-malignant prostate epithelial cells, PCa cells become highly dependent on an exogenous source of Gln. The Gln metabolism in PCa is tightly controlled by well-described oncogenes such as MYC, AR, and mTOR. These oncogenes contribute to therapy resistance and progression to the aggressive castration-resistant PCa. Inhibition of Gln catabolism impedes PCa growth, survival, and tumor-initiating potential while sensitizing the cells to radiotherapy. Therefore, given its significant role in tumor growth, targeting Gln metabolism is a promising approach for developing new therapeutic strategies. Ongoing clinical trials evaluate the safety and efficacy of Gln catabolism inhibitors in combination with conventional and targeted therapies in patients with various solid tumors, including PCa. Further understanding of how PCa cells metabolically interact with their microenvironment will facilitate the clinical translation of Gln inhibitors and help improve therapeutic outcomes. This review focuses on the role of Gln in PCa progression and therapy resistance and provides insights into current clinical trials.

3.
Bioengineering (Basel) ; 11(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199815

RESUMEN

The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.

4.
Magn Reson Med ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051628

RESUMEN

PURPOSE: To establish an interleaved multislice variant of the averaged magnetization inversion-recovery acquisitions (AMIRA) approach for 2D spinal cord imaging with increased acquisition efficiency compared with the conventional 2D single-slice approach(es), and to determine essential prerequisites for a working interleaved multislice AMIRA approach in practice. METHODS: The general AMIRA concept is based on an inversion recovery-prepared, segmented, and time-limited cine balanced SSFP sequence, generating images of different contrast. For AMIRA imaging of multiple, independent slices in a 2D interleaved fashion, a slice loop within the acquisition loops was programmed. The former non-selective inversions were replaced with slice-selective inversions with user-definable slice thickness. RESULTS: The thickness of the slice-selective inversion in 2D interleaved multislice AMIRA should be doubled compared with the manufacturer's standard setting to avoid an increased sensitivity to flow and pulsation effects particularly in the CSF. However, this solution also limits its practical applicability, as slices located at directly adjacent vertebrae cannot be imaged together. Successful interleaved two-slice AMIRA imaging for a "reference" in vivo protocol with 0.50 × 0.50 mm2 in-plane resolution and 8-mm slice thickness is demonstrated, therefore halving its acquisition time per slice from 3 min down to 1.5 min. CONCLUSION: The investigated 2D interleaved two-slice AMIRA variant facilitates spinal cord imaging that maintains similar contrast and the same resolution as the conventional 2D single-slice AMIRA approach, but does so with a halved acquisition time.

5.
Neuroradiology ; 66(7): 1161-1176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676750

RESUMEN

PURPOSE: Intracranial hypertension (IH) frequently complicates cerebral venous thrombosis (CVT). Distinct neuroimaging findings are associated with IH, yet their discriminative power, reversibility and factors favoring normalization in prospective CVT patients are unknown. We determined test performance measures of neuroimaging signs in acute CVT patients, their longitudinal change under anticoagulation, association with IH at baseline and with recanalization at follow-up. METHODS: We included 26 consecutive acute CVT patients and 26 healthy controls. Patients were classified as having IH based on CSF pressure > 25 cmH2O and/or papilledema on ophthalmological examination or ocular MRI. We assessed optic nerve sheath diameter (ONSD), optic nerve tortuousity, bulbar flattening, lateral and IVth ventricle size, pituitary configuration at baseline and follow-up, and their association with IH and venous recanalization. RESULTS: 46% of CVT patients had IH. ONSD enlargement > 5.8 mm, optic nerve tortuousity and pituitary grade ≥ III had highest sensitivity, ocular bulb flattening and pituitary grade ≥ III highest specificity for IH. Only ONSD reliably discriminated IH at baseline. Recanalization was significantly associated with regressive ONSD and pituitary grade. Other neuroimaging signs tended to regress with recanalization. After treatment, 184.9 ± 44.7 days after diagnosis, bulbar flattening resolved, whereas compared with controls ONSD enlargement (p < 0.001) and partially empty sella (p = 0.017), among other indicators, persisted. CONCLUSION: ONSD and pituitary grading have a high diagnostic value in diagnosing and monitoring CVT-associated IH. Given their limited sensitivity during early CVT and potentially persistent alterations following IH, neuroimaging indicators can neither replace CSF pressure measurement in diagnosing IH, nor determine the duration of anticoagulation.


Asunto(s)
Hipertensión Intracraneal , Trombosis Intracraneal , Trombosis de la Vena , Humanos , Masculino , Femenino , Hipertensión Intracraneal/diagnóstico por imagen , Adulto , Trombosis Intracraneal/diagnóstico por imagen , Trombosis Intracraneal/complicaciones , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/complicaciones , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Persona de Mediana Edad , Estudios de Casos y Controles , Estudios Prospectivos
6.
Sci Rep ; 14(1): 9848, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684744

RESUMEN

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Asunto(s)
Esclerosis Múltiple , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen de Difusión por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Biomarcadores , Neuritas/patología , Inflamación/patología , Inflamación/diagnóstico por imagen
7.
Front Neuroimaging ; 3: 1359589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606197

RESUMEN

Introduction: Multi-shell diffusion Magnetic Resonance Imaging (dMRI) data has been widely used to characterise white matter microstructure in several neurodegenerative diseases. The lack of standardised dMRI protocols often implies the acquisition of redundant measurements, resulting in prolonged acquisition times. In this study, we investigate the impact of the number of gradient directions on Diffusion Tensor Imaging (DTI) and on Neurite Orientation Dispersion and Density Imaging (NODDI) metrics. Methods: Data from 124 healthy controls collected in three different longitudinal studies were included. Using an in-house algorithm, we reduced the number of gradient directions in each data shell. We estimated DTI and NODDI measures on six white matter bundles clinically relevant for neurodegenerative diseases. Results: Fractional Anisotropy (FA) measures on bundles where data were sampled at the 30% rate, showed a median L1 distance of up to 3.92% and a 95% CI of (1.74, 8.97)% when compared to those obtained at reference sampling. Mean Diffusivity (MD) reached up to 4.31% and a 95% CI of (1.60, 16.98)% on the same premises. At a sampling rate of 50%, we obtained a median of 3.90% and a 95% CI of (1.99, 16.65)% in FA, and 5.49% with a 95% CI of (2.14, 21.68)% in MD. The Intra-Cellular volume fraction (ICvf) median L1 distance was up to 2.83% with a 95% CI of (1.98, 4.82)% at a 30% sampling rate and 3.95% with a 95% CI of (2.39, 7.81)% at a 50% sampling rate. The volume difference of the reconstructed white matter at reference and 50% sampling reached a maximum of (2.09 ± 0.81)%. Discussion: In conclusion, DTI and NODDI measures reported at reference sampling were comparable to those obtained when the number of dMRI volumes was reduced by up to 30%. Close to reference DTI and NODDI metrics were estimated with a significant reduction in acquisition time using three shells, respectively with: 4 directions at a b value of 700 s/mm2, 14 at 1000 s/mm2, and 32 at 2000 s/mm2. The study revealed aspects that can be important for large-scale clinical studies on bundle-specific diffusion MRI.

8.
Eur J Neurol ; 31(6): e16268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38465478

RESUMEN

BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS: A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS: Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION: Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia , Sustancia Gris , Imagen por Resonancia Magnética , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Femenino , Persona de Mediana Edad , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano , Atrofia/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Vértebras Torácicas/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Vértebras Cervicales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
9.
Neurology ; 102(1): e207768, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165377

RESUMEN

BACKGROUND AND OBJECTIVES: Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. METHODS: From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. RESULTS: In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] -1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC -1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). DISCUSSION: Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Femenino , Niño , Masculino , Estudios de Cohortes , Estudios Transversales , Encéfalo/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Enfermedad Crónica
10.
Neurology ; 102(3): e207966, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38165297

RESUMEN

BACKGROUND AND OBJECTIVES: A subgroup of patients with multiple sclerosis (MS) presents focal paramagnetic rims at the border between cortex and white matter (juxtacortical paramagnetic rims [JPRs]). We investigated the presence of this finding in our in vivo MS cohort and explored its potential clinical relevance. Moreover, we exploited postmortem MRI of fixed whole MS brains to (1) detect those rims and (2) investigate their histologic correlation. METHODS: Quantitative susceptibility mapping (QSM) and magnetization-prepared 2 rapid acquisition gradient-echo (MP2RAGE) images at 3T-MRI of 165 patients with MS from the in vivo cohort were screened for JPRs and the presence of cortical lesions. Five postmortem brains from patients with MS were imaged with 3T-MRI to obtain QSM and MP2RAGE sequences. Tissue blocks containing JPRs were excised and paraffin-embedded slices stained by immunohistochemistry for myelin basic protein (for myelin) and anti-CR3/43 (for major histocompatibility complex II-positive microglia/macrophages). DAB-Turnbull stain was performed to detect iron. RESULTS: JPRs are present in approximately 10% of in vivo patients and are associated with increased cortical lesion load. One of the 5 postmortem brains showed JPRs. Histologically, JPRs correspond to an accumulation of activated iron-laden phagocytes and are associated with demyelination of the whole overlying cortical ribbon. DISCUSSION: JPRs are a novel potential MRI biomarker of focal cortical demyelination, which seems related to global cortical pathology and might be useful for diagnostic and stratification purposes in a clinical setting.


Asunto(s)
Relevancia Clínica , Esclerosis Múltiple , Humanos , Prevalencia , Esclerosis Múltiple/diagnóstico por imagen , Autopsia , Hierro
12.
Front Neurosci ; 17: 1007580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824214

RESUMEN

Introduction: The presence of focal cortical and white matter damage in patients with multiple sclerosis (pwMS) might lead to specific alterations in brain networks that are associated with cognitive impairment. We applied microstructure-weighted connectomes to investigate (i) the relationship between global network metrics and information processing speed in pwMS, and (ii) whether the disruption provoked by focal lesions on global network metrics is associated to patients' information processing speed. Materials and methods: Sixty-eight pwMS and 92 healthy controls (HC) underwent neuropsychological examination and 3T brain MRI including multishell diffusion (dMRI), 3D FLAIR, and MP2RAGE. Whole-brain deterministic tractography and connectometry were performed on dMRI. Connectomes were obtained using the Spherical Mean Technique and were weighted for the intracellular fraction. We identified white matter lesions and cortical lesions on 3D FLAIR and MP2RAGE images, respectively. PwMS were subdivided into cognitively preserved (CPMS) and cognitively impaired (CIMS) using the Symbol Digit Modalities Test (SDMT) z-score at cut-off value of -1.5 standard deviations. Statistical analyses were performed using robust linear models with age, gender, and years of education as covariates, followed by correction for multiple testing. Results: Out of 68 pwMS, 18 were CIMS and 50 were CPMS. We found significant changes in all global network metrics in pwMS vs HC (p < 0.05), except for modularity. All global network metrics were positively correlated with SDMT, except for modularity which showed an inverse correlation. Cortical, leukocortical, and periventricular lesion volumes significantly influenced the relationship between (i) network density and information processing speed and (ii) modularity and information processing speed in pwMS. Interestingly, this was not the case, when an exploratory analysis was performed in the subgroup of CIMS patients. Discussion: Our study showed that cortical (especially leukocortical) and periventricular lesions affect the relationship between global network metrics and information processing speed in pwMS. Our data also suggest that in CIMS patients increased focal cortical and periventricular damage does not linearly affect the relationship between network properties and SDMT, suggesting that other mechanisms (e.g. disruption of local networks, loss of compensatory processes) might be responsible for the development of processing speed deficits.

13.
Mult Scler Relat Disord ; 71: 104545, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758461

RESUMEN

BACKGROUND: Although cervical spinal cord (cSC) area is an established biomarker in MS, there is currently a lack of longitudinal assessments of cSC gray and white matter areas. OBJECTIVE: We conducted an explorative analysis of longitudinal changes of cSC gray and white matter areas in MS patients. METHODS: 65 MS patients (33 relapsing-remitting; 20 secondary progressive and 12 primary progressive) and 20 healthy controls (HC) received clinical and upper cSC MRI assessments over 1.10±0.28 years. cSC compartments were quantified on MRI using the novel averaged magnetization inversion recovery acquisitions sequence (in-plane resolution=0.67 × 0.67mm2), and in-house developed post-processing methods. Patients were stratified regarding clinical progression. RESULTS: Patients with clinical progression showed faster reduction of cSC areas over time at the level of cSC enlargement (approximate vertebral level C4-C5) compared to stable patients (p<0.05). In addition, when compared to the rostral-cSC (approximate vertebral level C2-C3), a preferential reduction of cSC and white matter areas over time at the level of cSC enlargement (p<0.05 and p<0.01, respectively) was demonstrated only in patients with clinical progression, but not in stable MS patients and HC. Compared to HC, MS patients showed comparable changes over time in all cSC compartments. CONCLUSIONS: MS patients with clinical disease progression demonstrate subtle signs of a more pronounced tissue loss at the level of cSC enlargement. Future studies should consider larger sample sizes and more extended observation periods.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad , Atrofia/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología
14.
Neuroimage Clin ; 37: 103349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36801600

RESUMEN

OBJECTIVES AND AIMS: Quantitative MRI (qMRI) has greatly improved the sensitivity and specificity of microstructural brain pathology in multiple sclerosis (MS) when compared to conventional MRI (cMRI). More than cMRI, qMRI also provides means to assess pathology within the normal-appearing and lesion tissue. In this work, we further developed a method providing personalized quantitative T1 (qT1) abnormality maps in individual MS patients by modeling the age dependence of qT1 alterations. In addition, we assessed the relationship between qT1 abnormality maps and patients' disability, in order to evaluate the potential value of this measurement in clinical practice. METHODS: We included 119 MS patients (64 relapsing-remitting MS (RRMS), 34 secondary progressive MS (SPMS), 21 primary progressive MS (PPMS)), and 98 Healthy Controls (HC). All individuals underwent 3T MRI examinations, including Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) for qT1 maps and High-Resolution 3D Fluid Attenuated Inversion Recovery (FLAIR) imaging. To calculate personalized qT1 abnormality maps, we compared qT1 in each brain voxel in MS patients to the average qT1 obtained in the same tissue (grey/white matter) and region of interest (ROI) in healthy controls, hereby providing individual voxel-based Z-score maps. The age dependence of qT1 in HC was modeled using linear polynomial regression. We computed the average qT1 Z-scores in white matter lesions (WMLs), normal-appearing white matter (NAWM), cortical grey matter lesions (GMcLs) and normal-appearing cortical grey matter (NAcGM). Lastly, a multiple linear regression (MLR) model with the backward selection including age, sex, disease duration, phenotype, lesion number, lesion volume and average Z-score (NAWM/NAcGM/WMLs/GMcLs) was used to assess the relationship between qT1 measures and clinical disability (evaluated with EDSS). RESULTS: The average qT1 Z-score was higher in WMLs than in NAWM. (WMLs: 1.366 ± 0.409, NAWM: -0.133 ± 0.288, [mean ± SD], p < 0.001). The average Z-score in NAWM in RRMS patients was significantly lower than in PPMS patients (p = 0.010). The MLR model showed a strong association between average qT1 Z-scores in white matter lesions (WMLs) and EDSS (R2 = 0.549, ß = 0.178, 97.5 % CI = 0.030 to 0.326, p = 0.019). Specifically, we measured a 26.9 % increase in EDSS per unit of qT1 Z-score in WMLs in RRMS patients (R2 = 0.099, ß = 0.269, 97.5 % CI = 0.078 to 0.461, p = 0.007). CONCLUSIONS: We showed that personalized qT1 abnormality maps in MS patients provide measures related to clinical disability, supporting the use of those maps in clinical practice.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
15.
J Magn Reson Imaging ; 58(3): 864-876, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36708267

RESUMEN

BACKGROUND: Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE: To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE: Retrospective, longitudinal. SUBJECTS: A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE: Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT: The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS: The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION: In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Masculino , Humanos , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios de Cohortes , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
16.
Brain Pathol ; 33(6): e13136, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36480267

RESUMEN

Quantitative MRI (qMRI) probes the microstructural properties of the central nervous system (CNS) by providing biophysical measures of tissue characteristics. In this work, we aimed to (i) identify qMRI measures that distinguish histological lesion types in postmortem multiple sclerosis (MS) brains, especially the remyelinated ones; and to (ii) investigate the relationship between those measures and quantitative histological markers of myelin, axons, and astrocytes in the same experimental setting. Three fixed MS whole brains were imaged with qMRI at 3T to obtain magnetization transfer ratio (MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative susceptibility mapping (QSM), fractional anisotropy (FA) and radial diffusivity (RD) maps. The identification of lesion types (active, inactive, chronic active, or remyelinated) and quantification of tissue components were performed using histological staining methods as well as immunohistochemistry and immunofluorescence. Pairwise logistic and LASSO regression models were used to identify the best qMRI discriminators of lesion types. The association between qMRI and quantitative histological measures was performed using Spearman's correlations and linear mixed-effect models. We identified a total of 65 lesions. MTR and MWF best predicted the chance of a lesion to be remyelinated, whereas RD and QSM were useful in the discrimination of active lesions. The measurement of microstructural properties through qMRI did not show any difference between chronic active and inactive lesions. MWF and RD were associated with myelin content in both lesions and normal-appearing white matter (NAWM), FA was the measure most associated with axon content in both locations, while MWF was associated with astrocyte immunoreactivity only in lesions. Moreover, we provided evidence of extensive astrogliosis in remyelinated lesions. Our study provides new information on the discriminative power of qMRI in differentiating MS lesions -especially remyelinated ones- as well as on the relative association between multiple qMRI measures and myelin, axon and astrocytes.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Vaina de Mielina/patología
17.
Mult Scler ; 29(6): 702-718, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36550626

RESUMEN

BACKGROUND: Spinal cord (SC) gray and white matter pathology plays a central role in multiple sclerosis (MS). OBJECTIVE: We aimed to investigate the extent, pattern, and clinical relevance of SC gray and white matter atrophy in vivo. METHODS: 39 relapsing-remitting patients (RRMS), 40 progressive MS patients (PMS), and 24 healthy controls (HC) were imaged at 3T using the averaged magnetization inversion recovery acquisitions sequence. Total and lesional cervical gray and white matter, and posterior (SCPH) and anterior horn (SCAH) areas were automatically quantified. Clinical assessment included the expanded disability status scale, timed 25-foot walk test, nine-hole peg test, and the 12-item MS walking scale. RESULTS: PMS patients had significantly reduced cervical SCAH - but not SCPH - areas compared with HC and RRMS (both p < 0.001). In RRMS and PMS, the cervical SCAH areas increased significantly less in the region of cervical SC enlargement compared with HC (all p < 0.001). This reduction was more pronounced in PMS compared with RRMS (both p < 0.001). In PMS, a lower cervical SCAH area was the most important magnetic resonance imaging (MRI)-variable for higher disability scores. CONCLUSION: MS patients show clinically relevant cervical SCAH atrophy, which is more pronounced in PMS and at the level of cervical SC enlargement.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Esclerosis Múltiple/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Sustancia Gris/patología , Imagen por Resonancia Magnética , Atrofia/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología
18.
Front Neurosci ; 17: 1228952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239829

RESUMEN

Introduction: Recent studies showed that the myelin of the brain changes in the life span, and demyelination contributes to the loss of brain plasticity during normal aging. Diffusion-weighted magnetic resonance imaging (dMRI) allows studying brain connectivity in vivo by mapping axons in white matter with tractography algorithms. However, dMRI does not provide insight into myelin; thus, combining tractography with myelin-sensitive maps is necessary to investigate myelin-weighted brain connectivity. Tractometry is designated for this purpose, but it suffers from some serious limitations. Our study assessed the effectiveness of the recently proposed Myelin Streamlines Decomposition (MySD) method in estimating myelin-weighted connectomes and its capacity to detect changes in myelin network architecture during the process of normal aging. This approach opens up new possibilities compared to traditional Tractometry. Methods: In a group of 85 healthy controls aged between 18 and 68 years, we estimated myelin-weighted connectomes using Tractometry and MySD, and compared their modulation with age by means of three well-known global network metrics. Results: Following the literature, our results show that myelin development continues until brain maturation (40 years old), after which degeneration begins. In particular, mean connectivity strength and efficiency show an increasing trend up to 40 years, after which the process reverses. Both Tractometry and MySD are sensitive to these changes, but MySD turned out to be more accurate. Conclusion: After regressing the known predictors, MySD results in lower residual error, indicating that MySD provides more accurate estimates of myelin-weighted connectivity than Tractometry.

19.
Neuroimage Clin ; 36: 103177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36067611

RESUMEN

INTRODUCTION: Multiple Sclerosis (MS) is a common neurological disease primarily characterized by myelin damage in lesions and in normal - appearing white and gray matter (NAWM, NAGM). Several quantitative MRI (qMRI) methods are sensitive to myelin characteristics by measuring specific tissue biophysical properties. However, there are currently few studies assessing the relative reproducibility and sensitivity of qMRI measures to MS pathology in vivo in patients. METHODS: We performed two studies. The first study assessed of the sensitivity of qMRI measures to MS pathology: in this work, we recruited 150 MS and 100 healthy subjects, who underwent brain MRI at 3 T including quantitative T1 mapping (qT1), quantitative susceptibility mapping (QSM), magnetization transfer saturation imaging (MTsat) and myelin water imaging for myelin water fraction (MWF). The sensitivity of qMRIs to MS focal pathology (MS lesions vs peri-plaque white/gray matter (PPWM/PPGM)) was studied lesion-wise; the sensitivity to diffuse normal appearing (NA) pathology was measured using voxel-wise threshold-free cluster enhancement (TFCE) in NAWM and vertex-wise inflated cortex analysis in NAGM. Furthermore, the sensitivity of qMRI to the identification of lesion tissue was investigated using a voxel-wise logistic regression analysis to distinguish MS lesion and PP voxels. The second study assessed the reproducibility of myelin-sensitive qMRI measures in a single scanner. To evaluate the intra-session and inter-session reproducibility of qMRI measures, we have investigated 10 healthy subjects, who underwent two brain 3 T MRIs within the same day (without repositioning), and one after 1-week interval. Five region of interest (ROIs) in white and deep grey matter areas were segmented, and inter- and intra- session reproducibility was studied using the intra-class correlation coefficient (ICC). Further, we also investigated the voxel-wise reproducibility of qMRI measures in NAWM and NAGM. RESULTS: qT1 and QSM showed the highest sensitivity to distinguish MS focal WM and cortical pathology from peri-plaque WM (P < 0.0001), although QSM also showed the highest variance when applied to lesions. MWF and MTsat exhibited the highest sensitivity to NAWM pathology (P < 0.01). On the other hand, qT1 appeared to be the most sensitive measure to NAGM pathology (P < 0.01). All myelin-sensitive qMRI measures exhibited high inter/intra sessional ICCs in various WM and deep GM ROIs, in NAWM and in NAGM (ICC 0.82 ± 0.12). CONCLUSION: This work shows that the applied qT1, MWF, MTsat and QSM are highly reproducible and exhibit differential sensitivity to focal and diffuse WM and GM pathology in MS patients.


Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Humanos , Vaina de Mielina/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Agua , Encéfalo/diagnóstico por imagen , Encéfalo/patología
20.
Ann Neurol ; 92(3): 486-502, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713309

RESUMEN

OBJECTIVES: Neuropathological studies have shown that multiple sclerosis (MS) lesions are heterogeneous in terms of myelin/axon damage and repair as well as iron content. However, it remains a challenge to identify specific chronic lesion types, especially remyelinated lesions, in vivo in patients with MS. METHODS: We performed 3 studies: (1) a cross-sectional study in a prospective cohort of 115 patients with MS and 76 healthy controls, who underwent 3 T magnetic resonance imaging (MRI) for quantitative susceptibility mapping (QSM), myelin water fraction (MWF), and neurite density index (NDI) maps. White matter (WM) lesions in QSM were classified into 5 QSM lesion types (iso-intense, hypo-intense, hyperintense, lesions with hypo-intense rims, and lesions with paramagnetic rim legions [PRLs]); (2) a longitudinal study of 40 patients with MS to study the evolution of lesions over 2 years; (3) a postmortem histopathology-QSM validation study in 3 brains of patients with MS to assess the accuracy of QSM classification to identify neuropathological lesion types in 63 WM lesions. RESULTS: At baseline, hypo- and isointense lesions showed higher mean MWF and NDI values compared to other QSM lesion types (p < 0.0001). Further, at 2-year follow-up, hypo-/iso-intense lesions showed an increase in MWF. Postmortem analyses revealed that QSM highly accurately identifies (1) fully remyelinated areas as hypo-/iso-intense (sensitivity = 88.89% and specificity = 100%), (2) chronic inactive lesions as hyperintense (sensitivity = 71.43% and specificity = 92.00%), and (3) chronic active/smoldering lesions as PRLs (sensitivity = 92.86% and specificity = 86.36%). INTERPRETATION: These results provide the first evidence that it is possible to distinguish chronic MS lesions in a clinical setting, hereby supporting with new biomarkers to develop and assess remyelinating treatments. ANN NEUROL 2022;92:486-502.


Asunto(s)
Esclerosis Múltiple , Biomarcadores , Encéfalo/patología , Estudios Transversales , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Prospectivos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...