Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Front Immunol ; 15: 1387921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119344

RESUMEN

Psoriasis is a common chronic inflammatory skin disease that significantly impacts the patients' quality of life. Recent studies highlighted the function of the interleukin (IL)-1 family member IL-38 in skin homeostasis and suggested an anti-inflammatory role for this cytokine in psoriasis. In this study, we generated mice specifically overexpressing the IL-38 protein in epidermal keratinocytes. We confirmed IL-38 overexpression in the skin by Western blotting. We further detected the protein by ELISA in the plasma, as well as in conditioned media of skin explants isolated from IL-38 overexpressing mice, indicating that IL-38 produced in the epidermis is released from keratinocytes and can be found in the circulation. Unexpectedly, epidermal IL-38 overexpression did not impact the global severity of imiquimod (IMQ)-induced skin inflammation, Similarly, keratinocyte activation and differentiation in IMQ-treated skin were not affected by increased IL-38 expression and there was no global effect on local or systemic inflammatory responses. Nevertheless, we observed a selective inhibition of CXCL1 and IL-6 production in response to IMQ in IL-38 overexpressing skin, as well as reduced Ly6g mRNA levels, suggesting decreased neutrophil infiltration. Epidermal IL-38 overexpression also selectively affected the desquamation process during IMQ-induced psoriasis, as illustrated by reduced plaque formation. Taken together, our results validate the generation of a new mouse line allowing for tissue-specific IL-38 overexpression. Interestingly, epidermal IL-38 overexpression selectively affected specific disease-associated readouts during IMQ-induced psoriasis, suggesting a more complex role of IL-38 in the inflamed skin than previously recognized. In particular, our data highlight a potential involvement of IL-38 in the regulation of skin desquamation.


Asunto(s)
Imiquimod , Interleucina-1 , Queratinocitos , Psoriasis , Animales , Queratinocitos/metabolismo , Queratinocitos/inmunología , Ratones , Psoriasis/inducido químicamente , Psoriasis/inmunología , Psoriasis/metabolismo , Interleucina-1/metabolismo , Interleucina-1/genética , Piel/inmunología , Piel/patología , Piel/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Ratones Endogámicos C57BL
2.
Mod Pathol ; : 100588, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097190

RESUMEN

Lymphoepithelioma-like urothelial carcinoma of the urinary bladder (LELC-B) is a rare histologic subtype characterized by strong immune cell infiltrates. A better prognosis and favorable response rates to immune-checkpoint inhibitors (ICI) have been described. We aimed to characterize the molecular profiles and immune cell infiltration of LELC-B for a better understanding and its therapeutic implications. We identified eleven muscle-invasive bladder cancer cases with pure and mixed LELC-B. PD-L1 expression and mismatch-repair (MMR) proteins were evaluated using immunohistochemistry. We calculated the tumor-mutational burden (TMB) and characterized mutational profiles using whole exome DNA-sequencing data. Transcriptomic signatures were detected using the NanoString nCounter PanCancer IO360 panel. Multiplex immunofluorescence of tumor microenvironment (PD-L1, PanCK, aSMA, Vimentin, CD45, Ki67) and T-cells (CD4, CD3, PD-1, CD163, CD8, FoxP3) was used to quantify cell populations. All LELC-B cases were highly positive for PD-L1 (median TPS/TC 70%; range 20-100; median CPS 100; range 50-100), MMR-proficient and negative for Epstein-Barr virus infection. Immune cell infiltrates were characterized by high CD8+ T-cell count and high PD-1/PD-L1 expression on immune and tumor cells. LELC-B showed upregulation of signaling pathways involved in immune cell response. Most common mutations were found in chromatin remodeling genes causing epigenetic dysregulation. All LELC-B cases showed high TMB of 39 Mut/Mb (IQR 29-66). In conclusion, LELC-B is a highly immunogenic tumor, showing strong upregulation of PD1/PD-L1 and making ICI a promising treatment option.

3.
Cardiovasc Res ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107245

RESUMEN

AIMS: Chronic hypoxia causes detrimental structural alterations in the lung, which may cause pulmonary hypertension and are partially mediated by the endothelium. While its relevance for the development of hypoxia-associated lung diseases is well known, determinants controlling the initial adaptation of the lung endothelium to hypoxia remain largely unexplored. METHODS AND RESULTS: We revealed that hypoxia activates the transcription factor nuclear factor of activated T-cells 5 (NFAT5) and studied its regulatory function in murine lung endothelial cells (MLECs). EC-specific knockout of Nfat5 (Nfat5(EC)-/-) in mice exposed to normobaric hypoxia (10% O2) for 21 days promoted vascular fibrosis and aggravated the increase in pulmonary right ventricular systolic pressure as well as right ventricular dysfunction as compared with control mice. Microarray- and single-cell RNA-sequencing-based analyses revealed an impaired growth factor-, energy-, and protein-metabolism-associated gene expression in Nfat5-deficient MLEC after exposure to hypoxia for 7 days. Specifically, loss of NFAT5 boosted the expression and release of platelet-derived growth factor B (Pdgfb)-a hypoxia-inducible factor 1 alpha (HIF1α)-regulated driver of vascular smooth muscle cell (VSMC) growth-in capillary MLEC of hypoxia-exposed Nfat5(EC)-/- mice, which was accompanied by intensified VSMC coverage of distal pulmonary arteries. CONCLUSION: Collectively, our study shows that early and transient subpopulation-specific responses of MLEC to hypoxia may determine the degree of organ dysfunction in later stages. In this context, NFAT5 acts as a protective transcription factor required to rapidly adjust the endothelial transcriptome to cope with hypoxia. Specifically, NFAT5 restricts HIF1α-mediated Pdgfb expression and consequently limits muscularization and resistance of the pulmonary vasculature.

4.
Transl Oncol ; 46: 102019, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833784

RESUMEN

The growth pattern of oropharyngeal squamous cell carcinomas (OPSCC) varies from compact tumor cell aggregates to diffusely infiltrating tumor cell-clusters. The influence of the growth pattern on local tumor control and survival has been studied mainly for surgically treated oral cavity carcinomas on a visual basis. In this study, we used multiplex immunofluorescence staining (mIF) to examine the antigens pan-cytokeratin, p16INK4a, Ki67, CD271, PD-L1, and CD8 in pretherapeutic biopsies from 86 OPSCC. We introduce Tumor-stroma contact ratio (TSC), a novel parameter, to quantify the relationship between tumor cells in contact with the stromal surface and the total number of epithelial tumor cells. mIF tumor cores were analyzed at the single-cell level, and tumor-stromal contact area was quantified using the R package "Spatstat". TSC was correlated with the visually assessed invasion pattern by two independent investigators. Furthermore, TSC was analyzed in relation to clinical parameters and patient survival data to evaluate its potential prognostic significance. Higher TSC correlated with poor response to (chemo-)radiotherapy (r = 0.3, p < 0.01), and shorter overall (OS) and progression-free (PFS) survival (median OS: 13 vs 136 months, p < 0.0001; median PFS: 5 vs 85 months, p < 0.0001). Visual categorization of growth pattern according to established criteria of tumor aggressiveness showed interobserver variability increasing with more nuanced categories (2 categories: k = 0.7, 95 %-CI: 0.55 - 0.85; 4 categories k = 0.48, 95 %-CI: 0.35 - 0.61). In conclusion, TSC is an objective and reproducible computer-based parameter to quantify tumor-stroma contact area. We demonstrate its relevance for the response of oropharyngeal carcinomas to primary (chemo-)radiotherapy.

5.
EMBO Rep ; 25(8): 3406-3431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937629

RESUMEN

The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Inmunoterapia , Inflamación , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/inmunología , Animales , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Humanos , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Inmunoterapia/métodos , Regulación Neoplásica de la Expresión Génica , Fibroblastos/metabolismo , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Transición Epitelial-Mesenquimal/genética
6.
JCI Insight ; 9(15)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900587

RESUMEN

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-ß1-activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-ß1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.


Asunto(s)
Ciclofilinas , Animales , Humanos , Ratones , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Colágeno Tipo I/metabolismo , Fibrosis , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Lactonas , Compuestos de Espiro
7.
Biomed Pharmacother ; 176: 116907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865849

RESUMEN

The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule -1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes.


Asunto(s)
Regulación hacia Abajo , Homoharringtonina , Inflamación , Factor 1 Regulador del Interferón , ARN Mensajero , Molécula 1 de Adhesión Celular Vascular , Animales , Regulación hacia Abajo/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Ratones , Homoharringtonina/farmacología , Masculino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Antiinflamatorios/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo
8.
Front Immunol ; 15: 1353922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745645

RESUMEN

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Asunto(s)
Células Dendríticas , Inflamación , Interleucina-4 , Mastocitos , Receptor Toll-Like 2 , Animales , Ratones , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-4/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Zimosan
9.
Pflugers Arch ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573347

RESUMEN

Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.

10.
Cell Death Dis ; 15(4): 266, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622118

RESUMEN

BH3-mimetics represent promising anti-cancer agents in tumors that rely on the anti-apoptotic function of B-Cell Lymphoma 2 (BCL2) proteins, particularly in leukemia and lymphoma cells primed for apoptosis. Mechanistically, BH3-mimetics may displace pro-apoptotic binding partners thus inducing BAX/BAK-mediated mitochondrial permeabilization followed by cytochrome c release, activation of the caspase cascade and apoptosis. Here, we describe a novel mode of caspase-independent cell death (CICD) induced by BH3-mimetics in a subset of diffuse large B-cell lymphoma (DLBCL) cells. Of note, rather than occurring via necroptosis, CICD induced immediately after mitochondrial permeabilization was associated with transcriptional reprogramming mediated by activation of c-Jun N-terminal Kinase (JNK) signaling and Activator Protein 1 (AP1). Thereby, CICD resulted in the JNK/AP1-mediated upregulation of inflammatory chemokines and increased migration of cytotoxic Natural Killer (NK) cells. Taken together, our study describes a novel mode of CICD triggered by BH3-mimetics that may alter the immune response towards dying cells.


Asunto(s)
Antineoplásicos , Linfoma de Células B Grandes Difuso , Humanos , Proteína X Asociada a bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Apoptosis , Antineoplásicos/farmacología , Caspasas , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Línea Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
11.
Front Immunol ; 15: 1355012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482001

RESUMEN

Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.


Asunto(s)
Citocinas , Macrófagos , Humanos , Citocinas/metabolismo , Transducción de Señal , Inflamación , Proteínas Adaptadoras Transductoras de Señales/metabolismo
12.
Oncogene ; 43(16): 1178-1189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396293

RESUMEN

Dual-specificity phosphatase 8 (DUSP8) plays an important role as a selective c-Jun N-terminal kinase (JNK) phosphatase in mitogen-activated protein kinase (MAPK) signaling. In this study, we found that DUSP8 is silenced by miR-147b in patients with lung adenocarcinoma (LUAD), which correlates with poor overall survival. Overexpression of DUSP8 resulted in a tumor-suppressive phenotype in vitro and in vivo experimental models, whereas silencing DUSP8 with a siRNA approach abrogated the tumor-suppressive properties. We found that miR-147b is a posttranscriptional regulator of DUSP8 that is highly expressed in patients with LUAD and is associated with lower survival. NanoString analysis revealed that the MAPK signaling pathway is mainly affected by overexpression of miR-147b, leading to increased proliferation and migration and decreased apoptosis in vitro. Moreover, induction of miR-147b promotes tumor progression in vitro and in vivo experimental models. Knockdown of miR-147b restored DUSP8, decreased tumor progression in vitro, and increased apoptosis via JNK phosphorylation. These results suggest that miR-147b plays a key role in regulating MAPK signaling in LUAD. The link between DUSP8 and miR-147b may provide novel approaches for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/genética , MicroARNs/genética , Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Proteínas Quinasas Activadas por Mitógenos , Proliferación Celular/genética , Línea Celular Tumoral , Fosfatasas de Especificidad Dual/genética
13.
Redox Biol ; 71: 103093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382185

RESUMEN

Solid tumors are characterized by hypoxic areas, which are prone for macrophage infiltration. Once infiltrated, macrophages polarize to tumor associated macrophages (TAM) to support tumor progression. Therefore, the crosstalk between TAMs and tumor cells is of current interest for the development of novel therapeutic strategies. These may comprise induction of an iron- and lipid peroxidation-dependent form of cell death, known as ferroptosis. To study the macrophage - tumor cell crosstalk we polarized primary human macrophages towards a TAM-like phenotype, co-cultured them with HT1080 fibrosarcoma cells, and analyzed the tumor cell response to ferroptosis induction. In TAMs the expression of ceruloplasmin mRNA increased, which was driven by hypoxia inducible factor 2 and signal transducer and activator of transcription 1. Subsequently, ceruloplasmin mRNA was transferred from TAMs to HT1080 cells via extracellular vesicles. In tumor cells, mRNA was translated into protein to protect HT1080 cells from RSL3-induced ferroptosis. Mechanistically this was based on reduced iron abundance and lipid peroxidation. Interestingly, in naïve macrophages also hypoxia induced ceruloplasmin under hypoxia and a co-culture of HT1080 cells with hypoxic macrophages recapitulated the protective effect observed in TAM co-cultures. In conclusion, TAMs provoke tumor cells to release iron and thereby protect them from lipid peroxidation/ferroptosis.


Asunto(s)
Ferroptosis , Fibrosarcoma , Humanos , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Macrófagos Asociados a Tumores/metabolismo , ARN Mensajero/genética , Hipoxia/metabolismo , Fibrosarcoma/genética , Hierro/metabolismo , Microambiente Tumoral
14.
Biomed Pharmacother ; 171: 116127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198951

RESUMEN

The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.


Asunto(s)
Epóxido Hidrolasas , Inflamación , Queratinocitos , Ácido Linoleico , Animales , Ratones , Proliferación Celular , Compuestos Epoxi , Queratinocitos/citología , Queratinocitos/enzimología , Leucotrieno B4 , Ácido Linoleico/metabolismo
15.
Br J Pharmacol ; 181(7): 1051-1067, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37823675

RESUMEN

BACKGROUND AND PURPOSE: Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed drugs in the world due to their analgesic, antipyretic and anti-inflammatory effects. However, NSAIDs inhibit prostanoid synthesis, interfering with their pro-inflammatory and anti-inflammatory functions and potentially prolonging acute inflammation. EXPERIMENTAL APPROACH: We used high-content immunohistochemistry to define the impact of meloxicam treatment on spatially separated pro-inflammatory and anti-inflammatory processes during innate inflammation in mice induced by zymosan. This allowed us to determine the effect of meloxicam treatment on the organization of pro-inflammatory and anti-inflammatory microenvironments, thereby identifying relevant changes in immune cell localization, recruitment and activation. KEY RESULTS: Meloxicam treatment reduced zymosan-induced thermal hypersensitivity at early time points but delayed its resolution. High-content immunohistochemistry revealed that the pro-inflammatory area was smaller after treatment, diminishing neutrophil recruitment, M1-like macrophage polarization, and especially phagocytosis by neutrophils and macrophages. The polarization of macrophages towards the M2-like anti-inflammatory phenotype was unaffected, and the number of anti-inflammatory eosinophils actually increased. CONCLUSION AND IMPLICATIONS: High-content immunohistochemistry was able to identify relevant meloxicam-mediated effects on inflammatory processes based on alterations in the regional structure of inflammation sites. Meloxicam delayed the clearance of pathogens by inhibiting pro-inflammatory processes, causing prolonged inflammation. Our data suggest that the prescription of NSAIDs as a treatment during an acute pathogen-driven inflammation should be reconsidered in patients with compromised immune systems.


Asunto(s)
Prostaglandinas , Tiazinas , Humanos , Ratones , Animales , Meloxicam/efectos adversos , Zimosan , Tiazoles/farmacología , Tiazoles/uso terapéutico , Tiazinas/farmacología , Tiazinas/uso terapéutico , Antiinflamatorios no Esteroideos/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/efectos adversos
16.
Front Immunol ; 14: 1286850, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111571

RESUMEN

The success of immunotherapy approaches, such as immune checkpoint blockade and cellular immunotherapy with genetically modified lymphocytes, has firmly embedded the immune system in the roadmap for combating cancer. Unfortunately, the majority of cancer patients do not yet benefit from these therapeutic approaches, even when the prognostic relevance of the immune response in their tumor entity has been demonstrated. Therefore, there is a justified need to explore new strategies for inducing anti-tumor immunity. The recent connection between the formation of ectopic lymphoid aggregates at tumor sites and patient prognosis, along with an effective anti-tumor response, suggests that manipulating the occurrence of these tertiary lymphoid structures (TLS) may play a critical role in activating the immune system against a growing tumor. However, mechanisms governing TLS formation and a clear understanding of their substantial heterogeneity are still lacking. Here, we briefly summarize the current state of knowledge regarding the mechanisms driving TLS development, outline the impact of TLS heterogeneity on clinical outcomes in cancer patients, and discuss appropriate systems for modeling TLS heterogeneity that may help identify new strategies for inducing protective TLS formation in cancer patients.


Asunto(s)
Neoplasias , Estructuras Linfoides Terciarias , Humanos , Microambiente Tumoral , Pronóstico , Linfocitos Infiltrantes de Tumor
17.
Biology (Basel) ; 12(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998039

RESUMEN

Macrophages are a highly versatile and heterogenic group of immune cells, known for their involvement in inflammatory reactions. However, our knowledge about distinct subpopulations of macrophages and their specific contribution to the resolution of inflammation remains incomplete. We have previously shown, in an in vivo peritonitis model, that inhibition of the synthesis of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2) attenuates efficient resolution of inflammation. PGE2 levels during later stages of the inflammatory process further correlate with expression of the hyaluronan (HA) receptor Lyve1 in peritoneal macrophages. In the present study, we therefore aimed to understand if PGE2 might contribute to the regulation of Lyve1 and how this might impact inflammatory responses. In line with our in vivo findings, PGE2 synergized with dexamethasone to enhance Lyve1 expression in bone marrow-derived macrophages, while expression of the predominant hyaluronan receptor CD44 remained unaltered. PGE2-mediated Lyve1 upregulation was strictly dependent on PGE2 receptor EP2 signaling. While PGE2/dexamethasone-treated macrophages, despite their enhanced Lyve1 expression, did not show inflammatory responses upon stimulation with low (LMW) or high-molecular-weight hyaluronan (HMW)-HA, they were sensitized towards LMW-HA-dependent augmentation of lipopolysaccharide (LPS)-induced inflammatory responses. Thus, Lyve1-expressing macrophages emerged as a subpopulation of macrophages integrating inflammatory stimuli with extracellular matrix-derived signals.

18.
J Clin Pathol ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989554

RESUMEN

AIMS: Adjuvant chemotherapy after radical cystectomy can reduce the risk of recurrence and death in advanced muscle-invasive urothelial bladder cancer (MIBC). Molecular subtypes have been shown to be associated with survival. However, their predictive value to guide treatment decisions is controversial and data to use subtypes as guidance for adjuvant chemotherapy is sparse. We aimed to assess survival rates based on MIBC consensus molecular subtypes with and without adjuvant chemotherapy. METHODS: Gene expression profiles of 143 patients with MIBC undergoing radical cystectomy were determined from formalin-fixed, paraffin-embedded specimen to assign consensus molecular subtypes. Expression of programmed cell death ligand-1 (PD-L1) and immune cell infiltration were determined using multiplex immunofluorescence. Matched-pair analysis was performed to evaluate the effect of adjuvant chemotherapy on overall survival (OS) for molecular subtypes applying Kaplan-Meier and Cox regression survival analyses. RESULTS: Samples were luminal papillary: 9.1% (n=13), luminal non-specified: 6.3% (n=9), luminal unstable: 4.9% (n=7), stroma-rich: 27.9% (n=40), basal/squamous (Ba/Sq): 48.9% (n=70) and neuroendocrine-like (NE-like): 2.8% (n=4). Ba/Sq tumours had the highest concentration of PD-L1+ tumour and immune cells. Patients with luminal subtypes had better OS than those with NE-like (HR 0.2, 95% CI 0.1 to 0.7, p<0.05) and Ba/Sq (HR 0.5, 95% CI 0.2 to 0.9, p<0.05). No survival benefit with adjuvant chemotherapy was observed for luminal tumours, whereas Ba/Sq had significantly improved survival rates with adjuvant chemotherapy. Retrospective design and sample size are the main limitations. CONCLUSION: Consensus molecular subtypes can be used to stratify patients with MIBC. Luminal tumours have the best prognosis and less benefit when receiving adjuvant chemotherapy compared with Ba/Sq tumours.

19.
Circ Res ; 133(10): 842-857, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37800327

RESUMEN

BACKGROUND: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS: Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS: RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS: Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.


Asunto(s)
Sulfuro de Hidrógeno , Telomerasa , Animales , Humanos , Ratones , Senescencia Celular , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Cells ; 12(16)2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37626922

RESUMEN

The anti-inflammatory effects of depolymerizing microtubule-targeting agents on leukocytes are known for a long time, but the potential involvement of the vascular endothelium and the underlying mechanistic basis is still largely unclear. Using the recently synthesized depolymerizing microtubule-targeting agent pretubulysin, we investigated the anti-inflammatory potential of pretubulysin and other microtubule-targeting agents with respect to the TNF-induced leukocyte adhesion cascade in endothelial cells, to improve our understanding of the underlying biomolecular background. We found that treatment with pretubulysin reduces inflammation in vivo and in vitro via inhibition of the TNF-induced adhesion of leukocytes to the vascular endothelium by down-regulation of the pro-inflammatory cell adhesion molecules ICAM-1 and VCAM-1 in a JNK-dependent manner. The underlying mechanism includes JNK-induced deregulation and degradation of the histone acetyltransferase Bromodomain-containing protein 4. This study shows that depolymerizing microtubule-targeting agents, in addition to their established effects on leukocytes, also significantly decrease the inflammatory activation of vascular endothelial cells. These effects are not based on altered pro-inflammatory signaling cascades, but require deregulation of the capability of cells to enter constructive transcription for some genes, setting a baseline for further research on the prominent anti-inflammatory effects of depolymerizing microtubule-targeting agents.


Asunto(s)
Células Endoteliales , Proteínas Nucleares , Factores de Transcripción , Microtúbulos , Histona Acetiltransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...