Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Infect Dis ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842164

RESUMEN

BACKGROUND: By acting as an environmental sensor, the ligand-induced transcription factor aryl hydrocarbon receptor (AhR) regulates acute innate and adaptive immune responses against pathogens. Here, we analyzed the function of AhR in a model for chronic systemic infection with attenuated Salmonella Typhimurium (STM). METHODS: WT and AhR-deficient mice were infected with the attenuated STM strain TAS2010 and analyzed for bacterial burden, host defense functions and inflammatory stress erythropoiesis. RESULTS: AhR-deficient mice were highly susceptible to TAS2010 infection compared with WT mice demonstrated by reduced bacterial clearance and increased mortality. STM infection resulted in macrocytic anemia and enhanced splenomegaly along with destruction of the splenic architecture in AhR-deficient mice. In addition, AhR-deficient mice displayed a major expansion of splenic immature red blood cells, indicative of infection-induced stress erythropoiesis. Elevated serum levels of erythropoietin and interleukin-6 upon infection as well as increased numbers of splenic stress erythroid progenitors already in steady state probably drive this effect and might cause the alterations in splenic immune cell compartments, thereby preventing an effective host defense against STM in AhR-deficient mice. CONCLUSIONS: AhR-deficient mice fail to clear chronic TAS2010 infection due to enhanced stress erythropoiesis in the spleen and accompanying destruction of the splenic architecture.

2.
Mol Metab ; 85: 101963, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821174

RESUMEN

OBJECTIVE: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS: In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS: We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS: AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Obesidad/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Macrófagos/metabolismo , Células Mieloides/metabolismo , Fibrosis/metabolismo , Hígado/metabolismo , Transducción de Señal
3.
J Leukoc Biol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701199

RESUMEN

Intestinal eosinophils express the aryl hydrocarbon receptor (AHR), an environmental sensor and ligand-activated transcription factor that responds to dietary or environmental ligands. AHR regulates tissue adaptation, survival, adhesion, and immune functions in intestinal eosinophils. The AHR repressor (AHRR) is itself induced by AHR and believed to limit AHR activity in a negative feedback loop. We analysed gene expression in intestinal eosinophils from WT and AHRR-KO mice and found that AHRR did not suppress most AHR-dependent genes. Instead, AHRR limited the expression of a distinct small set of genes involved in the innate immune response. These included S100 proteins, antimicrobial proteins and alpha-defensins. Using bone marrow-derived eosinophils we found that AHRR-KO eosinophils released more reactive oxygen species upon stimulation. This work shows that the paradigm of AHRR as a repressor of AHR transcriptional activity does not apply to intestinal eosinophils. Rather, AHRR limits the expression of innate immune response and antimicrobial genes, possibly to maintain an anti-inflammatory phenotype in eosinophils when exposed to microbial signals in the intestinal environment.

4.
Osteoarthritis Cartilage ; 31(10): 1327-1341, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37225052

RESUMEN

OBJECTIVES: We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN: The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS: We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS: The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Osteoartritis de la Rodilla , Humanos , Masculino , Animales , Ratones , Citocinas , Dolor , Osteoartritis de la Rodilla/etiología , Membrana Sinovial/metabolismo , Quimiocina CCL17
5.
Front Immunol ; 13: 856230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464417

RESUMEN

Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNß production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.


Asunto(s)
Micotoxinas , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Citocinas/metabolismo , Células Dendríticas , Depsipéptidos , Células HEK293 , Humanos , Interleucina-12/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
6.
J Invest Dermatol ; 142(4): 1183-1193, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34571000

RESUMEN

The transcription factor HIF-1a regulates cellular metabolism under hypoxia but also immune responses and UVB-induced skin reactions. In keratinocytes (KCs), HIF-1a is an environmental sensor orchestrating the adaptation to environmental changes. In this study, we investigated the role of HIF-1a in KCs for skin reactions to acute and chronic UVB exposure in mice. The function of HIF-1a in KCs under UVB exposure was analyzed in KC-specific HIF-1a conditional knockout (cKO) mice. cKO mice were hypersensitive to acute high-dose UVB irradiation compared with wild-type mice, displaying increased cell death and delayed barrier repair. After chronic low-dose UVB treatment, cKO mice also had stronger epidermal damage but reduced infiltration of dermal macrophages and T helper cells compared with wild-type mice. Irradiated cKO mice revealed accumulation of regulatory lymphocytes in dorsal skin-draining lymph nodes compared with wild-type and unirradiated mice. This was reflected by an augmented IL-10 release of lymph node cells and a weaker contact hypersensitivity reaction to DNFB in UVB-exposed cKO mice than in wild-type and unirradiated controls. In summary, we found that KC-specific HIF-1a expression is crucial for adaptation to UVB exposure and inhibits the development of UVB-induced immunosuppression in mice. Therefore, HIF-1a signaling in KCs could ameliorate photoaging-related skin disorders.


Asunto(s)
Queratinocitos , Rayos Ultravioleta , Animales , Tolerancia Inmunológica , Terapia de Inmunosupresión , Queratinocitos/metabolismo , Ratones , Piel , Rayos Ultravioleta/efectos adversos
7.
Immun Inflamm Dis ; 9(3): 891-904, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33945673

RESUMEN

INTRODUCTION: Salmonella spp. are a recognized and global cause of serious health issues from gastroenteritis to invasive disease. The mouse model of human typhoid fever, which uses Salmonella enterica serovar Typhimurium (STM) in susceptible mouse strains, has revealed that the bacteria gain access to extraintestinal tissues from the gastrointestinal tract to cause severe systemic disease. Previous analysis of the immune responses against Salmonella spp. revealed the crucial role played by dendritic cells (DCs) in carrying STM from the intestinal mucosa to the mesenteric lymph nodes (mLNs), a key site for antigen presentation and T cell activation. In this study, we investigated the influence of chemokine CCL17 on the dissemination of STM. METHODS: WT, CCL17/EGFP reporter, or CCL17-deficient mice were infected orally with STM (SL1344) or mCherry-expressing STM for 1-3 days. Colocalization of STM with CCL17-expressing DCs in Peyer's patches (PP) and mLN was analyzed by fluorescence microscopy. In addition, DCs and myeloid cell populations from naïve and Salmonella-infected mice were analyzed by flow cytometry. Bacterial load was determined in PP, mLN, spleen, and liver 1 and 3 days after infection. RESULTS: Histological analysis revealed that CCL17-expressing cells are located in close proximity to STM in the dome area of PP. We show that, in mLN, STM were preferentially located within CCL17+ rather than CCL17- DCs, besides other mononuclear phagocytes, and identified the CD103+ CD11b- DC subset as the main STM-carrying DC population in the intestine. STM infection triggered upregulation of CCL17 expression in specific intestinal DC subsets in a tissue-specific manner. The dissemination of STM from the gut to the mLN, however, was only moderately influenced by the presence of CCL17. CONCLUSION: CCL17-expressing DCs were preferentially infected by Salmonella in the intestine in comparison to other DC. Nevertheless, the production of CCL17 was not essential for the early dissemination of Salmonella from the gut to systemic organs.


Asunto(s)
Quimiocina CCL17 , Células Dendríticas , Animales , Mucosa Intestinal , Ratones , Salmonella typhimurium , Bazo
8.
Exp Dermatol ; 30(11): 1699-1704, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33751678

RESUMEN

Herpes simplex virus type 1 (HSV-1) can induce in certain individuals with atopic dermatitis (AD) severe cutaneous infections that can spread throughout the entire body, a condition named as AD complicated by eczema herpeticum (ADEH). It has been recently found that ADEH patients can produce specific IgE against HSV-1 proteins, which may contribute to lower protection against HSV-1. However, little is known about the capacity of these HSV-1 proteins to produce an inflammatory response at the skin level. In this study, using a mouse model of AD-like dermatitis, three HSV-1 proteins (glycoprotein D -gD-, glycoprotein B -gB- and VP22) were applied on tape-stripped back skin mice in three exposures periods. Ovalbumin (OVA) and 0.9% NaCl were used as positive and negative controls, respectively. Skin samples were obtained for analysis of specific cell components of skin infiltration. The results showed that the viral protein gD induced a statistically significant increase in the number of dermal infiltrating CD3+, CD4+ cells and mast cells compared with the negative control group. gD was also able to induce epidermal thickening and epidermal infiltration of T cells closely related to the one produced in mice sensitized with OVA. However, VP22 and gB contributed to a lesser extent to skin inflammation. These results showed that proteins from HSV-1, especially gD, can have per se an important T cell and mast cell-driven inflammatory potential at the skin level.


Asunto(s)
Dermatitis Atópica/virología , Dermatitis/virología , Herpesvirus Humano 1 , Proteínas Virales , Animales , Modelos Animales de Enfermedad , Ratones
9.
Sci Rep ; 10(1): 21104, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273595

RESUMEN

Adipose tissue is an organized endocrine organ with important metabolic and immunological functions and immune cell-adipocyte crosstalk is known to drive various disease pathologies. Suitable 3D adipose tissue organoid models often lack resident immune cell populations and therefore require the addition of immune cells isolated from other organs. We have created the first 3D adipose tissue organoid model which could contain and maintain resident immune cell populations of the stromal vascular fraction (SVF) and proved to be effective in studying adipose tissue biology in a convenient manner. Macrophage and mast cell populations were successfully confirmed within our organoid model and were maintained in culture without the addition of growth factors. We demonstrated the suitability of our model for monitoring the lipidome during adipocyte differentiation in vitro and confirmed that this model reflects the physiological lipidome better than standard 2D cultures. In addition, we applied mass spectrometry-based lipidomics to track lipidomic changes in the lipidome upon dietary and immunomodulatory interventions. We conclude that this model represents a valuable tool for immune-metabolic research.


Asunto(s)
Tejido Adiposo/citología , Organoides/citología , Organoides/inmunología , Animales , Dieta , Imagenología Tridimensional , Insulina/farmacología , Interleucina-4/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Lipopolisacáridos/farmacología , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Organoides/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
10.
Cells ; 9(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050035

RESUMEN

A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Animales , Química Clic/métodos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/fisiología , Hígado Graso/etiología , Hígado Graso/metabolismo , Hepatocitos/fisiología , Inflamación/metabolismo , Macrófagos del Hígado/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Necrosis Tumoral alfa
11.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366032

RESUMEN

A diet rich in vegetables and fruit is generally considered healthy because of a high content of phytochemicals, vitamins, and fiber. The phytochemical indole-3-carbinol (I3C), a derivative of glucobrassicin, is sold as a dietary supplement promising diverse health benefits. I3C metabolites act as ligands of the aryl hydrocarbon receptor (AhR), an important sensor for environmental polyaromatic chemicals. Here, we investigated how dietary AhR ligand supplementation influences AhR target gene expression and intestinal microbiota composition. For this, we used AhR repressor (AhRR)-reporter mice as a tool to study AhR activation in the intestine following dietary I3C-supplementation in comparison with AhR ligand-deprived diets, including a high fat diet. AhRR expression in intestinal immune cells was mainly driven by dietary AhR ligands and was independent of microbial metabolites. A lack of dietary AhR ligands caused enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis and correlated with the expansion of Enterobacteriaceae, whereas Clostridiales, Muribaculaceae, and Rikenellaceae were strongly reduced. I3C supplementation largely reverted this effect. Comparison of I3C-induced changes in microbiota composition using wild-type (WT), AhRR-deficient, and AhR-deficient mice revealed both AhR-dependent and -independent alterations in the microbiome. Overall, our study demonstrates that dietary AhR ligand supplementation has a profound influence on Ahrr expression in intestinal immune cells as well as microbiota composition.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Indoles/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Femenino , Citometría de Flujo , Indoles/uso terapéutico , Masculino , Ratones , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hidrocarburo de Aril/genética
12.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213963

RESUMEN

Background Aryl hydrocarbon receptor (AHR)-deficient mice do not support the expansion of dendritic epidermal T cells (DETC), a resident immune cell population in the murine epidermis, which immigrates from the fetal thymus to the skin around birth. Material and Methods In order to identify the gene expression changes underlying the DETC disappearance in AHR-deficient mice, we analyzed microarray RNA-profiles of DETC, sorted from the skin of two-week-old AHR-deficient mice and their heterozygous littermates. In vitro studies were done for verification, and IL-10, AHR repressor (AHRR), and c-Kit deficient mice analyzed for DETC frequency. Results We identified 434 annotated differentially expressed genes. Gene set enrichment analysis demonstrated that the expression of genes related to proliferation, ion homeostasis and morphology differed between the two mouse genotypes. Importantly, with 1767 pathways the cluster-group "inflammation" contained the majority of AHR-dependently regulated pathways. The most abundant cluster of differentially expressed genes was "inflammation." DETC of AHR-deficient mice were inflammatory active and had altered calcium and F-actin levels. Extending the study to the AHRR, an enigmatic modulator of AHR-activity, we found approximately 50% less DETC in AHRR-deficient mice than in wild-type-littermates. Conclusion AHR-signaling in DETC dampens their inflammatory default potential and supports their homeostasis in the skin.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Proteínas Represoras/metabolismo , Piel/metabolismo , Linfocitos T/metabolismo , Transcriptoma , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Femenino , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Represoras/genética , Transducción de Señal , Piel/citología
14.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500303

RESUMEN

Viral infections are associated with increased incidence of severe sepsis. Particularly during the early stages, type I interferons (IFNs) are known mediators of detrimental effects. However, the functional role of early interferon ß (IFNß) and its cellular source during sepsis in the context of preexisting viral infections has not been defined. Using the colon ascendens stent peritonitis (CASP) model, we demonstrate that IFNß-/- and type I IFN receptor (IFNAR1)-/- mice were less susceptible to sepsis after pre-stimulation with the viral mimetic poly(I:C). Wild type (WT) mice treated with poly(I:C) exhibited altered expression patterns of TNF and IL-12p40 during CASP which were dependent on IFNß or IFNAR1, suggesting a mechanism for the increased sepsis susceptibility of WT mice. Using a double cytokine reporter mouse model, we present novel data on the simultaneous expression of IFNß and IL-12p40 on a single cell level during polymicrobial sepsis in vivo. Conventional dendritic cells (cDCs) were identified as primary source of IFNß and the protective cytokine IL-12p40 after CASP surgery irrespective of poly(I:C) pre-stimulation. These data demonstrated that if polymicrobial sepsis is preceded by a viral infection, IFNß and IL-12p40 are expressed by polyfunctional cDCs suggesting that these cells can play both detrimental and beneficial roles during sepsis development.


Asunto(s)
Coinfección/inmunología , Células Dendríticas/inmunología , Interferón beta/genética , Poli I-C/administración & dosificación , Receptor de Interferón alfa y beta/genética , Sepsis/inmunología , Animales , Coinfección/sangre , Coinfección/virología , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Interferón beta/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Poli I-C/inmunología , Receptor de Interferón alfa y beta/metabolismo , Sepsis/virología , Transducción de Señal
15.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31027998

RESUMEN

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Asunto(s)
Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Grasa Intraabdominal/inmunología , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Células 3T3 , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Homeostasis/inmunología , Humanos , Hidroxiprostaglandina Deshidrogenasas/genética , Resistencia a la Insulina/genética , Grasa Intraabdominal/citología , Células Jurkat , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , Factor de Transcripción STAT5/metabolismo
16.
Parasitol Res ; 118(2): 539-549, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30643971

RESUMEN

Worldwide approximately 68 million people are infected with lymphatic filariasis (Lf), provoked by Wuchereria bancrofti, Brugia malayi and Brugia timori. This disease can lead to massive swelling of the limbs (elephantiasis) and disfigurement of the male genitalia (hydrocele). Filarial induced immune regulation is characterised by dominant type 2 helper T cell and regulatory immune responses. In vitro studies have provided evidence that signalling via Toll-like receptor-mediated pathways is triggered by filarial associated factors. Nevertheless, until now, less is known about the role of the adapter molecule TRIF during in vivo infections. Here, we used the rodent-specific nematode Litomosoides sigmodontis to investigate the role of TLR signalling and the corresponding downstream adapter and regulatory molecules TRIF, MyD88, IRF1 and IRF3 during an ongoing infection in semi-susceptible C57BL/6 mice. Interestingly, lack of the central adapter molecule TRIF led to higher worm burden and reduced overall absolute cell numbers in the thoracic cavity (the site of infection) 30 days post-infection. In addition, frequencies of macrophages and lymphocytes in the TC were increased in infected TRIF-/- C57BL/6 mice, whereas frequencies of eosinophils, CD4+ and CD8+ T cells were reduced. Nevertheless, cytokine levels and regulatory T cell populations remained comparable between TRIF-deficient and wildtype C57BL/6 mice upon 30 days of L. sigmodontis infection. In summary, this study revealed a crucial role of the adapter molecule TRIF on worm recovery and immune cell recruitment into the site of infection 30 days upon L. sigmodontis infection in C57BL/6 mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Filariasis/inmunología , Filariasis/parasitología , Filarioidea/crecimiento & desarrollo , Filarioidea/inmunología , Transducción de Señal , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Citocinas/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Células Th2/inmunología
17.
Glia ; 66(10): 2246-2261, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30277599

RESUMEN

Chemokines are important signaling molecules in the immune and nervous system. Using a fluorescence reporter mouse model, we demonstrate that the chemokine CCL17, a ligand of the chemokine receptor CCR4, is produced in the murine brain, particularly in a subset of hippocampal CA1 neurons. We found that basal expression of Ccl17 in hippocampal neurons was strongly enhanced by peripheral challenge with lipopolysaccharide (LPS). LPS-mediated induction of Ccl17 in the hippocampus was dependent on local tumor necrosis factor (TNF) signaling, whereas upregulation of Ccl22 required granulocyte-macrophage colony-stimulating factor (GM-CSF). CCL17 deficiency resulted in a diminished microglia density under homeostatic and inflammatory conditions. Further, microglia from naïve Ccl17-deficient mice possessed a reduced cellular volume and a more polarized process tree as assessed by computer-assisted imaging analysis. Regarding the overall branching, cell surface area, and total tree length, the morphology of microglia from naïve Ccl17-deficient mice resembled that of microglia from wild-type mice after LPS stimulation. In line, electrophysiological recordings indicated that CCL17 downmodulates basal synaptic transmission at CA3-CA1 Schaffer collaterals in acute slices from naïve but not LPS-treated animals. Taken together, our data identify CCL17 as a homeostatic and inducible neuromodulatory chemokine affecting the presence and morphology of microglia and synaptic transmission in the hippocampus.


Asunto(s)
Quimiocina CCL17/metabolismo , Hipocampo/inmunología , Neuroinmunomodulación/fisiología , Neuronas/inmunología , Animales , Quimiocina CCL17/genética , Quimiocina CCL22/metabolismo , Femenino , Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/patología , Homeostasis/fisiología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/inmunología , Microglía/patología , Monocitos/inmunología , Monocitos/patología , Neuronas/patología , Receptores CCR4/metabolismo , Transmisión Sináptica/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
18.
Mol Ther ; 26(1): 95-104, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29103909

RESUMEN

The chemokine CCL17, mainly produced by dendritic cells (DCs) in the immune system, is involved in the pathogenesis of various inflammatory diseases. As a ligand of CCR4, CCL17 induces chemotaxis and facilitates T cell-DC interactions. We report the identification of two novel RNA aptamers, which were validated in vitro and in vivo for their capability to neutralize CCL17. Both aptamers efficiently inhibited the directed migration of the CCR4+ lymphoma line BW5147.3 toward CCL17 in a dose-dependent manner. To study the effect of these aptamers in vivo, we used a murine model of contact hypersensitivity. Systemic application of the aptamers significantly prevented ear swelling and T cell infiltration into the ears of sensitized mice after challenge with the contact sensitizer. The results of this proof-of-principle study establish aptamers as potent inhibitors of CCL17-mediated chemotaxis. Potentially, CCL17-specific aptamers may be used therapeutically in humans to treat or prevent allergic and inflammatory diseases.


Asunto(s)
Aptámeros de Nucleótidos/genética , Quimiocina CCL17/genética , Quimiotaxis/genética , Quimiotaxis/inmunología , Dermatitis por Contacto/genética , Dermatitis por Contacto/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Aptámeros de Nucleótidos/química , Movimiento Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros
20.
J Med Chem ; 60(9): 3636-3655, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28406627

RESUMEN

The Gi protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and ß-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC50 41.3 nM). In ß-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.


Asunto(s)
Indoles/farmacología , Receptores de Superficie Celular/agonistas , Regulación Alostérica , Animales , Células CHO , Calcio/metabolismo , Cromatografía Liquida , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Células Hep G2 , Humanos , Indoles/química , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G , Análisis Espectral/métodos , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...