Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3185, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676261

RESUMEN

Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. Despite a wealth of studies exploring trait relationships across the entire plant kingdom, the dominant traits underpinning these unique aspects of tree form and function remain unclear. Here, by considering 18 functional traits, encompassing leaf, seed, bark, wood, crown, and root characteristics, we quantify the multidimensional relationships in tree trait expression. We find that nearly half of trait variation is captured by two axes: one reflecting leaf economics, the other reflecting tree size and competition for light. Yet these orthogonal axes reveal strong environmental convergence, exhibiting correlated responses to temperature, moisture, and elevation. By subsequently exploring multidimensional trait relationships, we show that the full dimensionality of trait space is captured by eight distinct clusters, each reflecting a unique aspect of tree form and function. Collectively, this work identifies a core set of traits needed to quantify global patterns in functional biodiversity, and it contributes to our fundamental understanding of the functioning of forests worldwide.


Asunto(s)
Árboles , Biodiversidad , Bosques , Corteza de la Planta/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Semillas/fisiología , Árboles/fisiología , Madera/fisiología
2.
Nat Ecol Evol ; 6(1): 36-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949824

RESUMEN

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.


Asunto(s)
Ecosistema , Suelo , Fenotipo , Hojas de la Planta , Plantas
3.
New Phytol ; 232(4): 1849-1862, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455590

RESUMEN

The functioning of present ecosystems reflects deep evolutionary history of locally cooccurring species if their functional traits show high phylogenetic signal (PS). However, we do not understand what drives local PS. We hypothesize that local PS is high in undisturbed and stressful habitats, either due to ongoing local assembly of species that maintained ancestral traits, or to past evolutionary maintenance of ancestral traits within habitat species-pools, or to both. We quantified PS and diversity of 10 traits within 6704 local plant communities across 38 Dutch habitat types differing in disturbance or stress. Mean local PS varied 50-fold among habitat types, often independently of phylogenetic or trait diversity. Mean local PS decreased with disturbance but showed no consistent relationship to stress. Mean local PS exceeded species-pool PS, reflecting nonrandom subsampling from the pool. Disturbance or stress related more strongly to mean local than to species-pool PS. Disturbed habitats harbour species with evolutionary divergent trait values, probably driven by ongoing, local assembly of species: environmental fluctuations might maintain different trait values within lineages through an evolutionary storage effect. If functional traits do not reflect phylogeny, ecosystem functioning might not be contingent on the presence of particular lineages, and lineages might establish evolutionarily novel interactions.


Asunto(s)
Evolución Biológica , Ecosistema , Biodiversidad , Fenotipo , Filogenia , Plantas/genética
4.
PeerJ ; 8: e8656, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140309

RESUMEN

Factors controlling the spread of invasive earthworms in Minnesota's Boundary Waters Canoe Area Wilderness are poorly known. Believed to have been introduced by anglers who use them as bait, invasive earthworms can alter the physical and chemical properties of soil and modify forest plant communities. To examine factors influencing earthworm distribution and abundance, we sampled 38 islands across five lakes to assess the effects of campsites, fire and entry point distance on earthworm density, biomass and species richness. We hypothesized that all three parameters would be greater on islands with campsites, lower on burned islands and would decrease with distance from the wilderness entry point. In addition to sampling earthworms, we collected soil cores to examine soil organic matter and recorded ground and vegetation cover. Campsite presence was the single most important factor affecting sampled earthworm communities; density, biomass and species richness were all higher on islands having campsites. Fire was associated with reduced earthworm density, but had no direct effects on earthworm biomass or species richness. Fire influenced earthworm biomass primarily through its negative relationship to groundcover and through an interaction with entry point distance. Entry point distance itself affected earthworm density and biomass. For islands with campsites, earthworm biomass increased with distance from the entry point.

5.
Am Nat ; 188(4): 398-410, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27622874

RESUMEN

Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Nitrógeno , Filogenia
7.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832402

RESUMEN

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Asunto(s)
Biodiversidad , Actividades Humanas , Animales , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie
8.
Ecol Evol ; 4(14): 2799-811, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25165520

RESUMEN

In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.

9.
Philos Trans R Soc Lond B Biol Sci ; 366(1576): 2403-13, 2011 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-21768155

RESUMEN

Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.


Asunto(s)
Biota , Ecosistema , Modelos Biológicos , Animales , Ecología/métodos
10.
Ecology ; 89(8): 2165-71, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18724726

RESUMEN

Experimental studies demonstrating that nitrogen (N) enrichment reduces plant diversity within individual plots have led to the conclusion that anthropogenic N enrichment is a threat to global biodiversity. These conclusions overlook the influence of spatial scale, however, as N enrichment may alter beta diversity (i.e., how similar plots are in their species composition), which would likely alter the degree to which N-induced changes in diversity within localities translate to changes in diversity at larger scales that are relevant to policy and management. Currently, it is unclear how N enrichment affects biodiversity at scales larger than a small plot. We synthesized data from 18 N-enrichment experiments across North America to examine the effects of N enrichment on plant species diversity at three spatial scales: small (within plots), intermediate (among plots), and large (within and among plots). We found that N enrichment reduced plant diversity within plots by an average of 25% (ranging from a reduction of 61% to an increase of 5%) and frequently enhanced beta diversity. The extent to which N enrichment altered beta diversity, however, varied substantially among sites (from a 22% increase to an 18% reduction) and was contingent on site productivity. Specifically, N enrichment enhanced beta diversity at low-productivity sites but reduced beta diversity at high-productivity sites. N-induced changes in beta diversity generally reduced the extent of species loss at larger scales to an average of 22% (ranging from a reduction of 54% to an increase of 18%). Our results demonstrate that N enrichment often reduces biodiversity at both local and regional scales, but that a focus on the effects of N enrichment on biodiversity at small spatial scales may often overestimate (and sometimes underestimate) declines in regional biodiversity by failing to recognize the effects of N on beta diversity.


Asunto(s)
Biodiversidad , Nitrógeno/metabolismo , Plantas/metabolismo , Biomasa , Fertilizantes/análisis , Nitrógeno/química
11.
Ecol Lett ; 10(8): 680-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17594423

RESUMEN

Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity.


Asunto(s)
Biodiversidad , Ambiente , Modelos Teóricos , Poaceae/fisiología , Biomasa , Funciones de Verosimilitud , Dinámicas no Lineales
12.
Trends Ecol Evol ; 21(4): 178-85, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16701083

RESUMEN

There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.


Asunto(s)
Ecología , Animales , Plantas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...