Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 15707, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146948

RESUMEN

According to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development phase of the infection is critical, when tens to hundreds of virus-associated molecules are present in the patient's pharynx. In this study, we describe a novel universal diamond biosensor, which enables the specific detection of the virus at ultralow concentrations, even before any clinical symptoms arise. A diamond electrode is surface-functionalized with polyclonal anti-M1 antibodies, which then serve to identify the universal biomarker for the influenza virus, M1 protein. The absorption of the M1 protein onto anti-M1 sites of the electrode change its electrochemical impedance spectra. We achieved a limit of detection of 1 fg/ml in saliva buffer for the M1 biomarker, which corresponds to 5-10 viruses per sample in 5 minutes. Furthermore, the universality of the assay was confirmed by analyzing different strains of influenza A virus.


Asunto(s)
Anticuerpos/metabolismo , Técnicas Biosensibles/métodos , Boro/química , Diamante/química , Virus de la Influenza A/aislamiento & purificación , Biomarcadores/análisis , Espectroscopía Dieléctrica , Electrodos , Humanos , Propiedades de Superficie
2.
PLoS One ; 11(11): e0167225, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27902762

RESUMEN

Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.


Asunto(s)
Presentación de Antígeno , Antígenos Virales/inmunología , Bacillus subtilis/genética , ADN Recombinante/genética , Virus de la Influenza A/inmunología , Esporas Bacterianas/genética , Animales , Cromosomas/genética , Fusión Génica , Humanos , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...