Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38438092

RESUMEN

The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.


Asunto(s)
Braquiuros , ATPasas de Translocación de Protón Vacuolares , Animales , Amoníaco/metabolismo , Branquias/metabolismo , Transporte Biológico , Sodio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Braquiuros/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38346534

RESUMEN

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Asunto(s)
Acidosis Respiratoria , Braquiuros , Decápodos , Animales , Hipercapnia/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Octopamina/metabolismo , Acidosis Respiratoria/metabolismo , Braquiuros/fisiología , Branquias/metabolismo
3.
Acta Physiol (Oxf) ; 240(2): e14078, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38205922

RESUMEN

AIM: To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS: Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS: Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION: CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.


Asunto(s)
Amoníaco , Dióxido de Carbono , Animales , Humanos , Dióxido de Carbono/metabolismo , Amoníaco/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Aminoácidos , Metilaminas
4.
J Comp Physiol B ; 193(5): 509-522, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563322

RESUMEN

Crustaceans' endocrinology is a vastly understudied area of research. The major focus of the studies on this topic to date has been on the molting cycle (and in particular, the role of crustacean hyperglycemic hormone (CHH)), as well as the role of other hormones in facilitating physiological phenotypic adjustments to salinity changes. Additionally, while many recent studies have been conducted on the acclimation and adaptation capacity of crustaceans to a changing environment, only few have investigated internal hormonal balance especially with respect to an endocrine response to environmental challenges. Consequently, our study aimed to identify and characterize endocrine components of acid-base regulation in the European green crab, Carcinus maenas. We show that both the biogenic amine octopamine (OCT) and the CHH are regulatory components of branchial acid-base regulation. While OCT suppressed branchial proton excretion, CHH seemed to promote it. Both hormones were also capable of enhancing branchial ammonia excretion. Furthermore, mRNA abundance for branchial receptors (OCT-R), or G-protein receptor activated soluble guanylate cyclase (sGC1b), are affected by environmental change such as elevated pCO2 (hypercapnia) and high environmental ammonia (HEA). Our findings support a role for both OCT and CHH in the general maintenance of steady-state acid-base maintenance in the gill, as well as regulating the acid-base response to environmental challenges that C. maenas encounters on a regular basis in the habitats it dwells in and more so in the future ocean.


Asunto(s)
Braquiuros , Hormonas de Invertebrados , Animales , Braquiuros/fisiología , Octopamina , Amoníaco , Proteínas de Artrópodos
5.
Artículo en Inglés | MEDLINE | ID: mdl-37263376

RESUMEN

Na+/H+ exchangers are directly involved in a variety of an animal's essential physiological processes such as ionoregulation, acid-base regulation, nitrogenous waste excretion, and nutrient absorption. While nine NHX isoforms have been identified in Caenorhabditis elegans, the physiological importance of each isoform is not understood. The current study aimed to further our knowledge of NHX-3 which has previously been suggested to be involved in the movement of ammonia and acid-base equivalents across the nematode's hypodermis. Although NHX-3 knockout mutant nematodes exported H+ and imported Na+ at slower rates than wild-type nematodes, attempts to inhibit the NHX activity of mutant nematodes using amiloride and EIPA caused an unexpected increase in hypodermal H+ export and did not impact Na+ fluxes suggesting that the different H+ and Na+ transport profiles of the nematodes are likely due to compensatory changes in the mutants in response to the NHX-3 knockout, rather than the loss of NHX-3's physiological function. Significant changes in the mRNA expression of 7 other NHX isoforms, 2 Na+/H+ antiporter isoforms, and the V-type H+-ATPase were detected between wild-type and mutant nematodes. Furthermore, mutant nematodes possessed significantly reduced rates of cytochrome C oxidase activity and ammonia excretion rates, indicating the knockout of NHX-3 induced fundamental changes in metabolism that could impact the nematode's need to eliminate metabolic end-products like H+ and ammonia that relate to NHX transport. While C. elegans is a popular genetic model with cheap and accessible commercial mutants, our findings suggest caution in interpretation of results in studies using mutants to study physiological traits and the biological significance of specific transporters.


Asunto(s)
Caenorhabditis elegans , ATPasas de Translocación de Protón Vacuolares , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Técnicas de Inactivación de Genes , ATPasas de Translocación de Protón Vacuolares/metabolismo , Amoníaco/metabolismo , Isoformas de Proteínas/genética , Iones/metabolismo
6.
Sci Rep ; 13(1): 4416, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932112

RESUMEN

The orphan transporter hippocampus-abundant transcript 1 (Hiat1) was first identified in the mammalian brain. Its specific substrate specificity, however, has not been investigated to date. Here, we identified and analyzed Hiat1 in a crustacean, the green crab Carcinus maenas. Our phylogenetic analysis showed that Hiat1 protein is conserved at a considerable level between mammals and this invertebrate (ca. 78% identical and conserved amino acids). Functional expression of Carcinus maenas Hiat1 in Xenopus laevis oocytes demonstrated the capability to transport ammonia (likely NH4+) in a sodium-dependent manner. Furthermore, applying quantitative polymerase chain reaction, our results indicated a physiological role for Carcinus maenas Hiat1 in ammonia homeostasis, as mRNA abundance increased in posterior gills in response to elevated circulating hemolymph ammonia upon exposure to high environmental ammonia. Its ubiquitous mRNA expression pattern also suggests an essential role in general cellular detoxification of ammonia. Overall, our results introduce a new ubiquitously expressed ammonia transporter, consequently demanding revision of our understanding of ammonia handling in key model systems from mammalian kidneys to crustacean and fish gills.


Asunto(s)
Amoníaco , Braquiuros , Animales , Amoníaco/metabolismo , Filogenia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Branquias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Braquiuros/genética , Mamíferos/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-36577451

RESUMEN

The American horseshoe crab, Limulus polyphemus, excretes nitrogenous waste in the form of toxic ammonia across their book gills. The mechanism of this branchial excretion is yet unknown. In the current study, two isoforms of a novel ammonia transporter, LpHIAT1α and LpHIAT1ß, have been identified in L. polyphemus. Both isoforms have 12 predicted transmembrane regions and share 82.7% of amino acid identity to each other, and 77-86% amino acid homology to HIAT1 found in fish and crustaceans. In L. polyphemus, both isoforms were expressed in the gills, coxal glands, and brain. Slightly higher mRNA expression levels of LpHIAT1α were observed in the peripheral mitochondria-poor region of the gill (PMPA), central mitochondria-rich region of the gill (CMRA), and brain compared to the LpHIAT1ß isoform. A functional expression analysis of LpHIAT1α and LpHIAT1ß in Xenopus laevis oocytes resulted in a significantly lower uptake of the radiolabeled ammonia analogue 3H-methylamine when compared to controls, indicating an ammonia excretory function of the proteins. Exposure to elevated environmental ammonia (HEA, 1 mmol l-1 NH4Cl) caused an increase in mRNA expression of LpHIAT1ß in the ion-conductive ventral gill half. High mRNA expression of both isoforms in the brain, and the observation that LpHIAT1α and LpHIAT1ß likely mediate cellular ammonia excretion, suggests that these highly conserved ammonia transporters have an important housekeeping function in cellular ammonia elimination.


Asunto(s)
Amoníaco , Cangrejos Herradura , Animales , Amoníaco/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Aminoácidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Branquias/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-36379379

RESUMEN

Transbranchial transport processes are responsible for the homeostatic regulation of most essential physiological functions in aquatic crustaceans. Due to their widespread use as laboratory models, brachyuran crabs are commonly used to predict how other decapod crustaceans respond to environmental stressors including ocean acidification and warming waters. Non-brachyuran species such as the economically-valuable American lobster, Homarus americanus, possess trichobranchiate gills and epipodites that are known to be anatomically distinct from the phyllobranchiate gills of brachyurans; however, studies have yet to define their potential physiological differences. Our results indicate that the pleuro-, arthro-, and podobranch gills of the lobster are functionally homogenous and similar to the respiratory gills of brachyurans as indicated by equivalent rates of H+Eq., CO2, HCO3-, and ammonia transport and mRNA expression of related transporters and enzymes. The epipodites were found to be functionally distinct, being capable of greater individual rates of H+Eq., CO2, and ammonia transport despite mRNA transcript levels of related transporters and enzymes being only a fraction found in the gills. Collectively, mathematical estimates infer that the gills are responsible for 91% of the lobster's branchial HCO3- accumulation whereas the epipodites are responsible for 66% of branchial ammonia excretion suggesting different mechanisms exist in these tissues. Furthermore, the greater metabolic rate and amino acid catabolism in the epipodites suggest that the tissue much of the CO2 and ammonia excreted by this tissue originates intracellularly rather than systemically. These results provide evidence that non-brachyuran species must be carefully compared to brachyuran models.


Asunto(s)
Braquiuros , Nephropidae , Animales , Nephropidae/genética , Concentración de Iones de Hidrógeno , Branquias/metabolismo , Amoníaco/metabolismo , Dióxido de Carbono/metabolismo , Agua de Mar/química , Proteínas de Transporte de Membrana/metabolismo , Braquiuros/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
J Exp Biol ; 225(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36124551

RESUMEN

Ammonia excretion in fish excretory epithelia is a complex interplay of multiple membrane transport proteins and mechanisms. Using the model system of zebrafish (Danio rerio) larvae, here we identified three paralogues of a novel ammonia transporter, hippocampus-abundant transcript 1 (DrHiat1), also found in most vertebrates. When functionally expressed in Xenopus laevis oocytes, DrHiat1a and DrHiat1b promoted methylamine uptake in a competitive manner with ammonia. In situ hybridization experiments showed that both transporters were expressed as early as the 4-cell stage in zebrafish embryos and could be identified in most tissues 4 days post-fertilization. Larvae experiencing morpholino-mediated knockdown of DrHiat1b exhibited significantly lower whole-body ammonia excretion rates compared with control larvae. Markedly decreased site-specific total ammonia excretion of up to 85% was observed in both the pharyngeal region (site of developing gills) and the yolk sac (region shown to have the highest NH4+ flux). This study is the first to identify DrHiat1b/DrHIAT1 in particular as an important contributor to ammonia excretion in larval zebrafish. Being evolutionarily conserved, these proteins are likely involved in multiple other general ammonia-handling mechanisms, making them worthy candidates for future studies on nitrogen regulation in fishes and across the animal kingdom.


Asunto(s)
Proteínas de Transporte de Catión , Pez Cebra , Amoníaco/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Larva/metabolismo , Metilaminas/metabolismo , Morfolinos , Nitrógeno/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Sci Adv ; 8(10): eabm0303, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275725

RESUMEN

Reef-building corals maintain an intracellular photosymbiotic association with dinoflagellate algae. As the algae are hosted inside the symbiosome, all metabolic exchanges must take place across the symbiosome membrane. Using functional studies in Xenopus oocytes, immunolocalization, and confocal Airyscan microscopy, we established that Acropora yongei Rh (ayRhp1) facilitates transmembrane NH3 and CO2 diffusion and that it is present in the symbiosome membrane. Furthermore, ayRhp1 abundance in the symbiosome membrane was highest around midday and lowest around midnight. We conclude that ayRhp1 mediates a symbiosomal NH4+-trapping mechanism that promotes nitrogen delivery to algae during the day-necessary to sustain photosynthesis-and restricts nitrogen delivery at night-to keep algae under nitrogen limitation. The role of ayRhp1-facilitated CO2 diffusion is less clear, but it may have implications for metabolic dysregulation between symbiotic partners and bleaching. This previously unknown mechanism expands our understanding of symbioses at the immediate animal-microbe interface, the symbiosome.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Dióxido de Carbono/metabolismo , Arrecifes de Coral , Dinoflagelados/metabolismo , Nitrógeno/metabolismo , Simbiosis/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-35183760

RESUMEN

The effects of feeding (meal of 3% of body mass) on acid-base and nitrogen homeostasis were investigated in the seawater acclimated green shore crab, Carcinus maenas. Feeding did not change gastric fluid pH (~pH 6); however, feeding was associated with a respiratory acidosis. Hemolymph HCO3- did not increase during this acidosis, although titratable and net acid efflux changed from an uptake to an excretion. Feeding affected the crabs' nitrogen homeostasis causing a substantial increase in hemolymph ammonia and urea concentrations after six hours. At this point, hemolymph urea accounted for ~1/3 of nitrogenous waste accumulated within the hemolymph, suggesting a potential role in ammonia detoxification. The postprandial increase in hemolymph ammonia coincided with an 18-fold increase in ammonia excretion rates that accounted for the majority of net acid excreted by the crabs. Urea excretion rates did not increase after feeding; however, branchial urease activity increased, implying that the gills may possess a mechanism to form excretable ammonia through the catabolism of urea. Our results demonstrate that despite an acidic gastric compartment, C. maenas does not experience a postprandial alkaline tide and that any feeding related acid-base challenges are primarily derived from metabolic acid production. Our findings also indicate that unlike the bicarbonate buffering acid-base compensatory response induced by hypercapnia and emersion, acid-base challenges upon feeding are compensated through changes in the excretion of acid equivalents, mainly in the form of ammonia.


Asunto(s)
Braquiuros , Amoníaco , Animales , Nitrógeno , Agua de Mar , Urea
12.
Artículo en Inglés | MEDLINE | ID: mdl-35026389

RESUMEN

Elevation of temperature and CO2 levels within the world's aquatic environments is expected to cause numerous physiological challenges to their inhabitants. While effects on marine ecosystems have been well studied, freshwater ecosystems have rarely been examined using a dual-stressor approach leaving our understanding of its inhabitants upon these challenges unclear. We aimed to identify the affects of elevated temperature and hypercapnia in isolation and in combination on the metabolic and acid-base regulatory processes of a freshwater crayfish, Procambarus clarkii. Crayfish were exposed to freshwater conditions that may be prevalent by the year 2100 and metabolic responses were determined after 14-days of exposure. In addition, changes in branchial mRNA expression of acid-base linked transporters were investigated. Interactions between exposure conditions influenced extracellular pH as well as the nitrogen physiology and routine metabolic rate of the crayfish. Crayfish exposed to individual and combined elevations in temperature and/or hypercapnia maintained an extracellular pH similar to that of control crayfish. Dual-stressor exposed crayfish seem to elevate the importance of ammonium as an excretable acid-equivalent based on an overall increase in the branchial mRNA expression of transporters related to ammonia excretion including the Na+/K+-ATPase, Rhesus-protein, and the V-type H+-ATPase. Overall, hypercapnia and dual-stressor conditions caused a metabolic depression that may have long-lasting consequences such as limited locomotion, growth, and reproduction. Future generations of crayfish given the chance to adapt over several generations may ameliorate these consequences.


Asunto(s)
Astacoidea , Dióxido de Carbono , Animales , Astacoidea/fisiología , Dióxido de Carbono/metabolismo , Ecosistema , Temperatura , Humedales
13.
Curr Opin Insect Sci ; 47: 25-30, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33609767

RESUMEN

Avoiding the toxic effects of ammonia derived from catabolism of proteins and nucleic acids typically involves synthesis of the less soluble compound uric acid in insects, although some species which are not water stressed excrete ammonia directly. Some dipterans metabolize uric acid further to allantoin or urea. Uric acid plays diverse roles as a nitrogenous waste, nitrogen store, pigment, antioxidant and possibly a signaling molecule. Multiple transporters are implicated in urate transport, including members of the ABC and SLC families. Excretion of ammonia by the Malpighian tubules, hindgut, or anal papillae involves multiple transporters, including Na+/K+-ATPase, Rhesus glycoproteins, ammonia transporters (AMTs) and possibly a hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN).


Asunto(s)
Amoníaco , Nitrógeno , Animales , Insectos , Urea
14.
J Comp Physiol B ; 191(3): 455-468, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33616745

RESUMEN

Emersion limits water availability and impairs the gill function of water-breathing animals resulting in a reduced capacity to regulate respiratory gas exchange, acid-base balance, and nitrogenous waste excretion. Semi-terrestrial crustaceans such as Helice formosensis mitigate these physiological consequences by modifying and recycling urine and branchial water shifting some branchial workload to the antennal glands. To investigate how this process occurs, Helice formosensis were emersed for up to 160 h and their hemolymph and urinary acid-base, nitrogenous waste, free amino acids, and osmoregulatory parameters were investigated. Upon emersion, crabs experienced a respiratory acidosis that is restored by bicarbonate accumulation and ammonia reduction within the hemolymph and urine after 24 h. Prolonged emersion caused an overcompensatory metabolic alkalosis potentially limiting the crab's ability to remain emersed. During the alkalosis, hemolymph ammonia was maintained at control levels while urinary ammonia remained reduced by 60% of control values. During emersion, ammonia may be temporarily converted to alanine as part of the Cahill cycle until re-immersion where crabs can revert alanine to ammonia for excretion coinciding with the crabs' observed delayed ammonia excretion response. The presence of high hemolymph alanine concentrations even when immersed may indicate this cycle's use outside of emersion or in preparation for emersion. Furthermore, H. formosensis appears to be uniquely capable of actively suppressing its rate of desiccation in absence of behavioral changes, in part by creating hyperosmotic urine that mitigates evaporative water loss.


Asunto(s)
Braquiuros , Amoníaco , Animales , Nitrógeno , Osmorregulación , Equilibrio Hidroelectrolítico
15.
Artículo en Inglés | MEDLINE | ID: mdl-33556621

RESUMEN

The study of transbranchial ion and gas transport of water-breathing animals has long been a useful means of modeling transport processes of higher vertebrate organs through comparative physiology. The molecular era of biological research has brought forward valuable information detailing shifts in gene expression related to environmental stress and the sub-cellular localization of transporters; however, purely molecular studies can cause hypothetical transport mechanisms and hypotheses to be accepted without any direct physiological proof. Isolated perfused gill experiments are useful for testing most of these hypotheses and can sometimes be used outright to develop a well-supported working model for transport processes relating to an animal's osmoregulation, acid-base balance, nitrogen excretion, and respiratory gas exchange as well as their sensitivity to pollutants and environmental stress. The technique allows full control of internal hemolymph-like saline as well as the ambient environmental fluid compositions and can measure the electrophysiological properties of the gill as well as the transport rates of ions and gases as they traverse the gill epithelium. Additives such as pharmaceuticals or peptides as well as the exclusion of ions from the media are commonly used to identify the importance of specific transporters to transport mechanisms. The technique can also be used to identify the penetrance, retention, and localization of pollutants within the gill epithelium or to explore the uptake and metabolism of nutrients directly from the ambient environment. While this technique can be applied to virtually any isolatable organ, the anatomy and rigidity of the decapod crustacean gill make it an ideal candidate for most experimental designs.


Asunto(s)
Crustáceos/fisiología , Branquias/fisiología , Hemolinfa/fisiología , Modelos Biológicos , Osmorregulación/fisiología , Animales , Transporte Biológico , Crustáceos/anatomía & histología , Branquias/anatomía & histología
16.
Sci Rep ; 10(1): 11720, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678186

RESUMEN

Shallow hydrothermal vent environments are typically very warm and acidic due to the mixing of ambient seawater with volcanic gasses (> 92% CO2) released through the seafloor making them potential 'natural laboratories' to study long-term adaptations to extreme hypercapnic conditions. Xenograpsus testudinatus, the shallow hydrothermal vent crab, is the sole metazoan inhabitant endemic to vents surrounding Kueishantao Island, Taiwan, where it inhabits waters that are generally pH 6.50 with maximum acidities reported as pH 5.50. This study assessed the acid-base regulatory capacity and the compensatory response of X. testudinatus to investigate its remarkable physiological adaptations. Hemolymph parameters (pH, [HCO3-], [Formula: see text], [NH4+], and major ion compositions) and the whole animal's rates of oxygen consumption and ammonia excretion were measured throughout a 14-day acclimation to pH 6.5 and 5.5. Data revealed that vent crabs are exceptionally strong acid-base regulators capable of maintaining homeostatic pH against extreme hypercapnia (pH 5.50, 24.6 kPa [Formula: see text]) via HCO3-/Cl- exchange, retention and utilization of extracellular ammonia. Intact crabs as well as their isolated perfused gills maintained [Formula: see text]tensions below environmental levels suggesting the gills can excrete CO2 against a hemolymph-directed [Formula: see text] gradient. These specialized physiological mechanisms may be amongst the adaptations required by vent-endemic animals surviving in extreme conditions.


Asunto(s)
Adaptación Fisiológica , Braquiuros/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Hipercapnia/metabolismo , Estrés Fisiológico , Animales , Hemolinfa , Concentración de Iones de Hidrógeno , Hipercapnia/etiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-31207282

RESUMEN

The physiological consequences of exposing marine organisms to predicted future ocean scenarios, i.e. simultaneous increase in temperature and pCO2, have only recently begun to be investigated. Adult American lobster (Homarus americanus) were exposed to either current (16 °C, 47 Pa pCO2, pH 8.10) or predicted year 2300 (20 °C, 948 Pa pCO2, pH 7.10) ocean parameters for 14-16 days prior to assessing physiological changes in their hemolymph parameters as well as whole animal ammonia excretion and resting metabolic rate. Acclimation of lobster simultaneously to elevated pCO2 and temperature induced a prolonged respiratory acidosis that was only partially compensated for via accumulation of extracellular HCO3- and ammonia. Furthermore, acclimated animals possessed significantly higher ammonia excretion and oxygen consumption rates suggesting that future ocean scenarios may increase basal energetic demands on H. americanus. Enzyme activity related to protein metabolism (glutamine dehydrogenase, alanine aminotransferase, and aspartate aminotransferase) in hepatopancreas and muscle tissue were unaltered in future ocean scenario exposed animals; however, muscular citrate synthase activity was reduced suggesting that, while protein catabolism may be unchanged, the net energetic output of muscle may be compromised in future scenarios. Overall, H. americanus acclimated to ocean conditions predicted for the year 2300 appear to be incapable of fully compensating against climate change-related acid-base challenges and experience an increase in metabolic waste excretion and oxygen consumption. Combining our study with past literature on H. americanus suggests that the whole lifecycle from larvae to adult stages is at risk of severe growth, survival and reproductive consequences due to climate change.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Músculos/metabolismo , Nephropidae/fisiología , Aclimatación/genética , Amoníaco/química , Amoníaco/metabolismo , Animales , Larva/crecimiento & desarrollo , Consumo de Oxígeno , Agua de Mar , Temperatura
19.
J Exp Biol ; 221(Pt 6)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29361576

RESUMEN

Many studies have investigated ammonia excretion and acid-base regulation in aquatic arthropods, yet current knowledge of marine chelicerates is non-existent. In American horseshoe crabs (Limulus polyphemus), book gills bear physiologically distinct regions: dorsal and ventral half-lamellae, a central mitochondria-rich area (CMRA) and peripheral mitochondria-poor areas (PMPAs). In the present study, the CMRA and ventral half-lamella exhibited characteristics important for ammonia excretion and/or acid-base regulation, as supported by high expression levels of Rhesus-protein 1 (LpRh-1), cytoplasmic carbonic anhydrase (CA-2) and hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN) compared with the PMPA and dorsal half-lamella. The half-lamellae displayed remarkable differences; the ventral epithelium was ion-leaky whereas the dorsal counterpart possessed an exceptionally tight epithelium. LpRh-1 was more abundant than Rhesus-protein 2 (LpRh-2) in all investigated tissues, but LpRh-2 was more prevalent in the PMPA than in the CMRA. Ammonia influx associated with high ambient ammonia (HAA) treatment was counteracted by intact animals and complemented by upregulation of branchial CA-2, V-type H+-ATPase (HAT), HCN and LpRh-1 mRNA expression. The dorsal epithelium demonstrated characteristics of active ammonia excretion. However, an influx was observed across the ventral epithelium as a result of the tissue's high ion conductance, although the influx rate was not proportionately high considering the ∼3-fold inwardly directed ammonia gradient. These novel findings suggest a role for the coxal gland in excretion and in the maintenance of hemolymph ammonia regulation under HAA. Hypercapnic exposure induced compensatory respiratory acidosis and partial metabolic depression. Functional differences between the two halves of a branchial lamella may be physiologically beneficial in reducing the backflow of waste products into adjacent lamellae, especially in fluctuating environments where ammonia levels can increase.


Asunto(s)
Equilibrio Ácido-Base , Amoníaco/metabolismo , Proteínas de Artrópodos/metabolismo , Cangrejos Herradura/metabolismo , Animales , Branquias/enzimología , Branquias/metabolismo , Branquias/ultraestructura , Cangrejos Herradura/enzimología , Masculino
20.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378881

RESUMEN

Invertebrates employ a variety of ammonia excretion strategies to facilitate their survival in diverse aquatic environments, including freshwater, seawater and the water film surrounding soil particles. Various environmental properties set innate challenges for an organism's ammonia excretory capacity. These include the availability of NaCl and the respective ion-permeability of the organism's transport epithelia, and the buffering capacity of their immediate surrounding medium. To this end, some transporters seem to be conserved in the excretory process. This includes the Na+/K+(NH4+)-ATPase (NKA), the NH3/CO2 dual gas-channel Rhesus (Rh)-proteins and novel ammonia transporters (AMTs), which have been identified in several invertebrates but appear to be absent from vertebrates. In addition, recent evidence strongly suggests that the hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN) plays a significant role in ammonia excretion and is highly conserved throughout the animal kingdom. Furthermore, microtubule-dependent vesicular excretion pathways have been found in marine and soil-dwelling species, where, unlike freshwater systems, acid-trapping of excreted ammonia is difficult or absent owing to the high environmental buffering capacity of the surroundings. Finally, although ammonia is known to be a toxic nitrogenous waste product, certain marine species readily maintain potentially toxic hemolymph ammonia as a sort of ammonia homeostasis, which suggests that ammonia is involved in physiological processes and does not exist simply for excretion. Such findings are discussed within this Commentary and are hypothesized to be involved in acid-base regulation. We also describe excretory organs and processes that are dependent on environmental constraints and indicate gaps in the current knowledge in these topics.


Asunto(s)
Amoníaco/metabolismo , Organismos Acuáticos/metabolismo , Invertebrados/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA