Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(7): 916-923, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849529

RESUMEN

Many enzymes are allosterically regulated via conformational change; however, our ability to manipulate these structural changes and control function is limited. Here we install a conformational switch for allosteric activation into the kinesin-1 microtubule motor in vitro and in cells. Kinesin-1 is a heterotetramer that accesses open active and closed autoinhibited states. The equilibrium between these states centers on a flexible elbow within a complex coiled-coil architecture. We target the elbow to engineer a closed state that can be opened with a de novo designed peptide. The alternative states are modeled computationally and confirmed by biophysical measurements and electron microscopy. In cells, peptide-driven activation increases kinesin transport, demonstrating a primary role for conformational switching in regulating motor activity. The designs are enabled by our understanding of ubiquitous coiled-coil structures, opening possibilities for controlling other protein activities.


Asunto(s)
Cinesinas , Microtúbulos , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Regulación Alostérica , Humanos , Conformación Proteica , Péptidos/química , Péptidos/metabolismo , Modelos Moleculares
2.
J Cell Sci ; 137(8)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533689

RESUMEN

Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.


Asunto(s)
Cilios , Proteínas Asociadas a Microtúbulos , Cilios/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Animales , Dineínas/metabolismo , Dineínas/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transducción de Señal , Ratones , Flagelos/metabolismo
3.
Sci Adv ; 8(37): eabp9660, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112680

RESUMEN

Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.

4.
Sci Adv ; 7(31)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321209

RESUMEN

The cargo-binding capabilities of cytoskeletal motor proteins have expanded during evolution through both gene duplication and alternative splicing. For the light chains of the kinesin-1 family of microtubule motors, this has resulted in an array of carboxyl-terminal domain sequences of unknown molecular function. Here, combining phylogenetic analyses with biophysical, biochemical, and cell biology approaches, we identify a highly conserved membrane-induced curvature-sensitive amphipathic helix within this region of a subset of long kinesin light-chain paralogs and splice isoforms. This helix mediates the direct binding of kinesin-1 to lipid membranes. Membrane binding requires specific anionic phospholipids, and it contributes to kinesin-1-dependent lysosome positioning, a canonical activity that, until now, has been attributed exclusively the recognition of organelle-associated cargo adaptor proteins. This leads us to propose a protein-lipid coincidence detection framework for kinesin-1-mediated organelle transport.


Asunto(s)
Cinesinas , Microtúbulos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cinesinas/genética , Lípidos , Microtúbulos/metabolismo , Filogenia
5.
Proc Natl Acad Sci U S A ; 114(11): E2096-E2105, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242696

RESUMEN

Apoptosis signal-regulating kinases (ASK1-3) are apical kinases of the p38 and JNK MAP kinase pathways. They are activated by diverse stress stimuli, including reactive oxygen species, cytokines, and osmotic stress; however, a molecular understanding of how ASK proteins are controlled remains obscure. Here, we report a biochemical analysis of the ASK1 kinase domain in conjunction with its N-terminal thioredoxin-binding domain, along with a central regulatory region that links the two. We show that in solution the central regulatory region mediates a compact arrangement of the kinase and thioredoxin-binding domains and the central regulatory region actively primes MKK6, a key ASK1 substrate, for phosphorylation. The crystal structure of the central regulatory region reveals an unusually compact tetratricopeptide repeat (TPR) region capped by a cryptic pleckstrin homology domain. Biochemical assays show that both a conserved surface on the pleckstrin homology domain and an intact TPR region are required for ASK1 activity. We propose a model in which the central regulatory region promotes ASK1 activity via its pleckstrin homology domain but also facilitates ASK1 autoinhibition by bringing the thioredoxin-binding and kinase domains into close proximity. Such an architecture provides a mechanism for control of ASK-type kinases by diverse activators and inhibitors and demonstrates an unexpected level of autoregulatory scaffolding in mammalian stress-activated MAP kinase signaling.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5/química , MAP Quinasa Quinasa Quinasa 5/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Humanos , MAP Quinasa Quinasa 6/química , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Modelos Biológicos , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Arch Biochem Biophys ; 617: 60-67, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27756681

RESUMEN

Peroxiredoxin 1 is a member of the ubiquitous peroxiredoxin family of thiol peroxidases that catalyse the reduction of peroxides. In recent years eukaryotic peroxiredoxins have emerged as a critical component of cellular redox signalling, particularly in response to alterations in production of hydrogen peroxide. Peroxiredoxins are exquisitely sensitive to oxidation by hydrogen peroxide making them key peroxide sensing enzymes within cells. Evidence gathered over the last decade suggests that in addition to sensing the redox signal, peroxiredoxins have a major role in transducing this signal to downstream signalling proteins, ultimately contributing to regulation of diverse cellular processes including proliferation, differentiation and apoptosis. In this review we present the three current models for the sensing and signal transducing roles of peroxiredoxins, with a specific focus on mammalian peroxiredoxin 1. The evidence for each mechanism is discussed and areas for future work are identified.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/metabolismo , Animales , Apoptosis , Catálisis , Diferenciación Celular , Proliferación Celular , Humanos , Cinética , Oxidación-Reducción , Peroxiredoxina III/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Transducción de Señal
7.
Methods Mol Biol ; 1487: 53-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924558

RESUMEN

ERK1 and ERK2 (ERK1/2) are the primary effector kinases of the RAS-RAF-MEK-ERK signaling pathway. A variety of substrates and regulatory partners associate with ERK1/2 through distinct D-peptide- and DEF-docking sites on their kinase domains. While understanding of D-peptides that bind to ERK1/2 has become increasingly clear over the last decade, only more recently have structures of proteins interacting with other binding sites on ERK1/2 become available. PEA-15 is a 130-residue ERK1/2 regulator that engages both the D-peptide- and DEF-docking sites of ERK kinases, and directly sequesters the ERK2 activation loop in various different phosphorylation states. Here we describe the methods used to derive crystallization-grade complexes of ERK2-PEA-15, which may also be adapted for other regulators that associate with the activation loop of ERK1/2.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/química , Complejos Multiproteicos/química , Proteínas Reguladoras de la Apoptosis , Sitios de Unión , Cristalografía por Rayos X , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...