Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 21(7): 1196-1205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871986

RESUMEN

Single-cell RNA sequencing allows us to model cellular state dynamics and fate decisions using expression similarity or RNA velocity to reconstruct state-change trajectories; however, trajectory inference does not incorporate valuable time point information or utilize additional modalities, whereas methods that address these different data views cannot be combined or do not scale. Here we present CellRank 2, a versatile and scalable framework to study cellular fate using multiview single-cell data of up to millions of cells in a unified fashion. CellRank 2 consistently recovers terminal states and fate probabilities across data modalities in human hematopoiesis and endodermal development. Our framework also allows combining transitions within and across experimental time points, a feature we use to recover genes promoting medullary thymic epithelial cell formation during pharyngeal endoderm development. Moreover, we enable estimating cell-specific transcription and degradation rates from metabolic-labeling data, which we apply to an intestinal organoid system to delineate differentiation trajectories and pinpoint regulatory strategies.


Asunto(s)
Diferenciación Celular , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Endodermo/citología , Endodermo/metabolismo , Hematopoyesis , Linaje de la Célula , Análisis de Secuencia de ARN/métodos , Organoides/metabolismo , Organoides/citología
2.
Nat Methods ; 21(1): 50-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37735568

RESUMEN

RNA velocity has been rapidly adopted to guide interpretation of transcriptional dynamics in snapshot single-cell data; however, current approaches for estimating RNA velocity lack effective strategies for quantifying uncertainty and determining the overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show that veloVI compares favorably to previous approaches with respect to goodness of fit, consistency across transcriptionally similar cells and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that veloVI's posterior velocity uncertainty can be used to assess whether velocity analysis is appropriate for a given dataset. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.


Asunto(s)
ARN , Transcriptoma , ARN/genética , Aprendizaje
3.
Methods Mol Biol ; 2584: 269-292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36495456

RESUMEN

Technological developments have led to an explosion of high-throughput single-cell data, which are revealing unprecedented perspectives on cell identity. Recently, significant attention has focused on investigating, from single-cell RNA-sequencing (scRNA-seq) data, cellular dynamic processes, such as cell differentiation, cell cycle and cell (de)activation. In particular, trajectory inference methods, by ordering cells along a trajectory, allow estimating a differentiation tree of cells. While trajectory inference tools typically work with gene expression levels, common scRNA-seq protocols allow the identification and quantification of unspliced pre-mRNAs and mature spliced mRNAs for each gene. By exploiting the abundance of unspliced and spliced mRNA, one can infer the RNA velocity of individual cells, i.e., the time derivative of the gene expression state of cells. Whereas traditional trajectory inference methods reconstruct cellular dynamics given a population of cells of varying maturity, RNA velocity relies on a dynamical model describing splicing dynamics. Here, we initially discuss conceptual and theoretical aspects of both approaches, then illustrate how they can be combined together, and finally present an example use case on real data.


Asunto(s)
ARN , Análisis de la Célula Individual , ARN/genética , Análisis de la Célula Individual/métodos , Empalme del ARN , Diferenciación Celular/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...