Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(765): eadl1997, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292802

RESUMEN

The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Células B de Memoria , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/virología , Preescolar , SARS-CoV-2/inmunología , Linfocitos T CD4-Positivos/inmunología , Adulto , Células B de Memoria/inmunología , Niño , Células T de Memoria/inmunología , Masculino , Memoria Inmunológica , Femenino , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Persona de Mediana Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Adulto Joven
3.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37824081

RESUMEN

Several species generate their preimmune repertoire in gut-associated lymphoid tissues (GALT), compensating a reduced germline V gene repertoire by post-rearrangement diversification mechanisms (gene conversion and/or somatic hypermutation) in these environments that act as primary lymphoid organs. We summarize here these processes for three different species (chickens, sheep, and rabbits) and further discuss the analogous process that T-independent B cell responses in humans represent: we indeed recently showed that response against bacterial polysaccharides mobilize marginal zone B cells that prediversified against gut antigens. While the initial diversification strategy differs in these two cases, i.e., repertoire formation driven by gut-derived mitotic signals vs. response against gut antigens, the common feature of these two processes is the mobilization of a B cell compartment prediversified in GALT for immune responses against distinct systemic antigens.


Asunto(s)
Diversidad de Anticuerpos , Genes de Inmunoglobulinas , Humanos , Animales , Conejos , Ovinos/genética , Pollos/genética , Linfocitos B , Tejido Linfoide
4.
Nat Commun ; 14(1): 5695, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709749

RESUMEN

HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.


Asunto(s)
Linfocitos B , Metilación de ADN , Animales , Humanos , Ratones , ADN , ADN Helicasas , Centro Germinal , Células Plasmáticas
5.
Immunity ; 56(9): 2137-2151.e7, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37543032

RESUMEN

How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after SARS-CoV-2 Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of the COVID-19 mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reactions, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with a marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Infección Irruptiva , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
Cell Rep ; 42(4): 112378, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37060566

RESUMEN

The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.


Asunto(s)
Linfocitos B , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Tejido Linfoide , Transducción de Señal , Bazo
8.
Sci Immunol ; 8(79): eade1413, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706172

RESUMEN

Marginal zone (MZ) B cells are one of the main actors of T-independent (TI) responses in mice. To identify the B cell subset(s) involved in such responses in humans, we vaccinated healthy individuals with Pneumovax, a model TI vaccine. By high-throughput repertoire sequencing of plasma cells (PCs) isolated 7 days after vaccination and of different B cell subpopulations before and after vaccination, we show that the PC response mobilizes large clones systematically, including an immunoglobulin M component, whose diversification and amplification predated the pneumococcal vaccination. These clones could be mainly traced back to MZ B cells, together with clonally related IgA+ and, to a lesser extent, IgG+CD27+ B cells. Recombinant monoclonal antibodies isolated from large PC clones recognized a wide array of bacterial species from the gut flora, indicating that TI responses in humans largely mobilize MZ and switched B cells that most likely prediversified during mucosal immune responses against bacterial antigens and acquired pneumococcal cross-reactivity through somatic hypermutation.


Asunto(s)
Antígenos Bacterianos , Subgrupos de Linfocitos B , Animales , Humanos , Ratones , Linfocitos B , Tejido Linfoide , Vacunas Neumococicas , Polisacáridos , Intestinos
9.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342455

RESUMEN

Inborn and acquired deficits of type I interferon (IFN) immunity predispose to life-threatening COVID-19 pneumonia. We longitudinally profiled the B cell response to mRNA vaccination in SARS-CoV-2 naive patients with inherited TLR7, IRF7, or IFNAR1 deficiency, as well as young patients with autoantibodies neutralizing type I IFNs due to autoimmune polyendocrine syndrome type-1 (APS-1) and older individuals with age-associated autoantibodies to type I IFNs. The receptor-binding domain spike protein (RBD)-specific memory B cell response in all patients was quantitatively and qualitatively similar to healthy donors. Sustained germinal center responses led to accumulation of somatic hypermutations in immunoglobulin heavy chain genes. The amplitude and duration of, and viral neutralization by, RBD-specific IgG serological response were also largely unaffected by TLR7, IRF7, or IFNAR1 deficiencies up to 7 mo after vaccination in all patients. These results suggest that induction of type I IFN is not required for efficient generation of a humoral response against SARS-CoV-2 by mRNA vaccines.


Asunto(s)
Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Interferón Tipo I , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Autoanticuerpos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Receptor Toll-Like 7/genética , Vacunación , Vacunas de ARNm , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología , Interferón Tipo I/deficiencia
10.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36136586

RESUMEN

ÍSince the introduction of new generation pertussis vaccines, resurgence of pertussis has been observed in many developed countries. Former whole-cell pertussis (wP) vaccines are able to protect against disease and transmission but have been replaced in several industrialized countries because of their reactogenicity and adverse effects. Current acellular pertussis (aP) vaccines, made of purified proteins of Bordetella pertussis, are efficient at preventing disease but fail to induce long-term protection from infection. While the systemic and mucosal T cell immunity induced by the 2 types of vaccines has been well described, much less is known concerning B cell responses. Taking advantage of an inducible activation-induced cytidine deaminase fate-mapping mouse model, we compared effector and memory B cells induced by the 2 classes of vaccines and showed that a stronger and broader memory B cell and plasma cell response was achieved by a wP prime. We also observed that homologous or heterologous vaccine combinations that include at least 1 wP administration, even as a booster dose, were sufficient to induce this broad effector response, thus highlighting its dominant imprint on the B cell profile. Finally, we describe the settlement of memory B cell populations in the lung following subcutaneous wP prime vaccination.


Asunto(s)
Subgrupos de Linfocitos B , Tos Ferina , Ratones , Animales , Tos Ferina/prevención & control , Inmunización Secundaria , Vacuna contra la Tos Ferina , Bordetella pertussis
11.
Immunity ; 55(10): 1872-1890.e9, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36130603

RESUMEN

Memory B cells (MBCs) can persist for a lifetime, but the mechanisms that allow their long-term survival remain poorly understood. Here, we isolated and analyzed human splenic smallpox/vaccinia protein B5-specific MBCs in individuals who were vaccinated more than 40 years ago. Only a handful of clones persisted over such an extended period, and they displayed limited intra-clonal diversity with signs of extensive affinity-based selection. These long-lived MBCs appeared enriched in a CD21hiCD20hi IgG+ splenic B cell subset displaying a marginal-zone-like NOTCH/MYC-driven signature, but they did not harbor a unique longevity-associated transcriptional or metabolic profile. Finally, the telomeres of B5-specific, long-lived MBCs were longer than those in patient-paired naive B cells in all the samples analyzed. Overall, these results imply that separate mechanisms such as early telomere elongation, affinity selection during the contraction phase, and access to a specific niche contribute to ensuring the functional longevity of MBCs.


Asunto(s)
Memoria Inmunológica , Células B de Memoria , Linfocitos B/metabolismo , Centro Germinal , Humanos , Inmunoglobulina G/metabolismo
12.
Front Immunol ; 13: 873886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967317

RESUMEN

MBCs (MBCs) generated in T-dependent immune responses can persist for a lifetime and rapidly react upon secondary antigen exposure to differentiate into plasma cells (PCs) and/or to improve the affinity of their BCR through new rounds of hypermutation in germinal centers (GCs). The fate of a MBC in secondary immune reactions appears to depend upon multiple parameters, whose understanding is mandatory for the design of efficient vaccine strategies. We followed the behavior of MBCs in recall responses to SRBCs using an inducible AID fate mapping mouse model in which B cells engaged in a germinal center (GC) response are irreversibly labeled upon simultaneous tamoxifen ingestion and immunization. We used different schemes of mouse immunization and tamoxifen feeding in adoptive-transfer experiments of total splenic B cells into congenic mice that have been pre-immunized or not, to assess the contribution of the different effector subsets in a physiological competitive context. We were able to show that naive B cells can differentiate into GC B cells with kinetics similar to MBCs in the presence of previously activated T follicular helper (TFH) cells and a primed microenvironment. We also showed that MBCs are recruited into secondary GCs, together with naive B cells. In contrast, PC differentiation, which dominated secondary MBC responses, was not dependent upon a previous TFH activation. We observed that the presence of persisting germinal centers and circulating antibody levels are key factors determining the germinal center versus plasma cell fate in a recall response. Notably, disruption of persistent germinal center structures by a lymphotoxin beta-receptor fusion protein or a longer timing between the prime and the boost, which correlated with reduced antigen-specific immunoglobulin levels in serum, were two conditions with an opposite impact, respectively inhibiting or promoting a GC fate for MBCs. Altogether, these studies highlight the complexity of recall responses, whose outcome varies according to immunization contexts.


Asunto(s)
Linfocitos B , Memoria Inmunológica , Animales , Antígenos/metabolismo , Centro Germinal , Ratones , Células Plasmáticas , Tamoxifeno/metabolismo
13.
Immunity ; 55(6): 1096-1104.e4, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35483354

RESUMEN

The SARS-CoV-2 Omicron variant can escape neutralization by vaccine-elicited and convalescent antibodies. Memory B cells (MBCs) represent another layer of protection against SARS-CoV-2, as they persist after infection and vaccination and improve their affinity. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant remains unclear. We assessed the affinity and neutralization potency against the Omicron variant of several hundred naturally expressed MBC-derived monoclonal IgG antibodies from vaccinated COVID-19-recovered and -naive individuals. Compared with other variants of concern, Omicron evaded recognition by a larger proportion of MBC-derived antibodies, with only 30% retaining high affinity against the Omicron RBD, and the reduction in neutralization potency was even more pronounced. Nonetheless, neutralizing MBC clones could be found in all the analyzed individuals. Therefore, despite the strong immune escape potential of the Omicron variant, these results suggest that the MBC repertoire generated by mRNA vaccines still provides some protection against the Omicron variant in vaccinated individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Células B de Memoria , ARN Mensajero/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
14.
Immunity ; 54(12): 2893-2907.e5, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34614412

RESUMEN

In addition to serum immunoglobulins, memory B cell (MBC) generation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is another layer of immune protection, but the quality of MBC responses in naive and coronavirus disease 2019 (COVID-19)-recovered individuals after vaccination remains ill defined. We studied longitudinal cohorts of naive and disease-recovered individuals for up to 2 months after SARS-CoV-2 mRNA vaccination. We assessed the quality of the memory response by analysis of antibody repertoires, affinity, and neutralization against variants of concern (VOCs) using unbiased cultures of 2,452 MBCs. Upon boosting, the MBC pool of recovered individuals expanded selectively, matured further, and harbored potent neutralizers against VOCs. Although naive individuals had weaker neutralizing serum responses, half of their RBD-specific MBCs displayed high affinity toward multiple VOCs, including delta (B.1.617.2), and one-third retained neutralizing potency against beta (B.1.351). Our data suggest that an additional challenge in naive vaccinees could recall such affinity-matured MBCs and allow them to respond efficiently to VOCs.


Asunto(s)
Vacuna BNT162/inmunología , COVID-19/inmunología , Células B de Memoria/inmunología , Células Precursoras de Linfocitos B/inmunología , ARN Mensajero/genética , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Células Cultivadas , Convalecencia , Humanos , Inmunización Secundaria , Memoria Inmunológica , Vacunación Masiva , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
16.
Sci Transl Med ; 13(589)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853929

RESUMEN

Rituximab (RTX), an antibody targeting CD20, is widely used as a first-line therapeutic strategy in B cell-mediated autoimmune diseases. However, a large proportion of patients either do not respond to the treatment or relapse during B cell reconstitution. Here, we characterize the cellular basis responsible for disease relapse in secondary lymphoid organs in humans, taking advantage of the opportunity offered by therapeutic splenectomy in patients with relapsing immune thrombocytopenia. By analyzing the B and plasma cell immunoglobulin gene repertoire at bulk and antigen-specific single-cell level, we demonstrate that relapses are associated with two responses coexisting in germinal centers and involving preexisting mutated memory B cells that survived RTX treatment and naive B cells generated upon reconstitution of the B cell compartment. To identify distinctive characteristics of the memory B cells that escaped RTX-mediated depletion, we analyzed RTX refractory patients who did not respond to treatment at the time of B cell depletion. We identified, by single-cell RNA sequencing (scRNA-seq) analysis, a population of quiescent splenic memory B cells that present a unique, yet reversible, RTX-shaped phenotype characterized by down-modulation of B cell-specific factors and expression of prosurvival genes. Our results clearly demonstrate that these RTX-resistant autoreactive memory B cells reactivate as RTX is cleared and give rise to plasma cells and further germinal center reactions. Their continued surface expression of CD19 makes them efficient targets for current anti-CD19 therapies. This study thus identifies a pathogenic contributor to autoimmune diseases that can be targeted by available therapeutic agents.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Anticuerpos Monoclonales de Origen Murino , Linfocitos B , Humanos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Recurrencia , Rituximab/farmacología , Rituximab/uso terapéutico
17.
Arthritis Rheumatol ; 73(8): 1461-1466, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33645886

RESUMEN

OBJECTIVE: This study was undertaken to characterize kidney and urine antibody-secreting cells (ASCs) from patients with active lupus nephritis, before and after induction therapy. METHODS: We included patients with biopsy-proven active lupus nephritis and performed anti-CD138 staining of kidney biopsy samples to visualize ASCs. We performed single-cell gene expression profiling on sorted ASCs from fresh biopsy samples using multiplex reverse transcriptase-polymerase chain reaction. We used a gene set that allowed for the study of ASC maturation from plasmablasts to long-lived plasma cells. We quantified urine ASCs from untreated patients with lupus nephritis at diagnosis and after 6 months of prospective follow-up during induction therapy. RESULTS: The number of kidney CD138+ ASCs in 46 untreated patients with lupus nephritis was correlated with a low estimated glomerular filtration rate and with tubulointerstitial damage. Most kidney ASCs from 3 untreated patients had a plasmablast molecular signature; in contrast, in 4 patients with refractory lupus nephritis, the kidney ASCs were mainly long-lived plasma cells, representing an ASC transcriptional profile similar to that in the bone marrow of 2 healthy donors. Some urine ASCs with a plasmablast signature were detected in patients with untreated active lupus nephritis. The presence of urine ASCs at 6 months was associated with treatment failure. CONCLUSION: Our results suggest potential for ASC-directed therapy in refractory lupus nephritis.


Asunto(s)
Células Productoras de Anticuerpos/metabolismo , Inmunosupresores/uso terapéutico , Riñón/citología , Nefritis Lúpica/genética , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Quimioterapia de Inducción , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/orina , Reacción en Cadena de la Polimerasa Multiplex , Células Plasmáticas/metabolismo , Estudios Prospectivos , Resultado del Tratamiento , Orina/citología
18.
Cell ; 184(5): 1201-1213.e14, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33571429

RESUMEN

Memory B cells play a fundamental role in host defenses against viruses, but to date, their role has been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including pre-existing cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late, remarkably stable, memory B cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.


Asunto(s)
Linfocitos B/inmunología , COVID-19/inmunología , Memoria Inmunológica , Adulto , COVID-19/fisiopatología , Citometría de Flujo , Centro Germinal/citología , Humanos , Activación de Linfocitos , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Glicoproteína de la Espiga del Coronavirus/química
19.
Haematologica ; 106(9): 2449-2457, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817288

RESUMEN

B-cell activating factor may be involved in the failure of B-cell depleting therapy with rituximab in immune thrombocytopenia (ITP) by promoting the emergence of splenic long-lived plasma cells. From results obtained in mouse models, we hypothesized that combining rituximab with sequential injections of belimumab could increase the rate of response at one year in patients with persistent or chronic ITP by preventing the emergence of these long-lived plasma cells. The study was a single-center, single arm, prospective phase 2b trial (RITUX-PLUS, NCT03154385) investigating the safety and efficacy of rituximab given at a fixed dose of 1,000 mg, two weeks apart, combined with five infusions of belimumab, 10 mg/kg at week 0 (W0)+2 days, W2+2 days, W4, W8 and W12 for adults with primary persistent or chronic ITP. The primary endpoint was the total number of patients achieving an overall response (complete response + response) at W52 according to a standard definition. In total, 15 non-splenectomized adults, nine (60%) with persistent IPT and six (40%) with chronic ITP, were included. No severe adverse event, infection, or severe hypogammaglobulinemia was observed. Thirteen patients achieved an initial overall response. At W52, 12 (80%) patients achieved an overall response, including ten (66.7%) with complete response. When compared with a cohort of patients receiving rituximab alone, the kinetics of B-cell repopulation appeared similar, but the number of circulating T follicular helper cells was significantly decreased with belimumab combination therapy. Combining rituximab and belimumab seems a promising strategy in ITP, with high efficacy and acceptable safety.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Adulto , Animales , Anticuerpos Monoclonales Humanizados , Humanos , Ratones , Estudios Prospectivos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Rituximab/efectos adversos , Resultado del Tratamiento
20.
Kidney Int ; 97(5): 885-893, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32229095

RESUMEN

B-cell depletion with anti-CD20 monoclonal antibodies is widely used for the treatment of autoimmune diseases. This review will discuss mechanisms contributing to success or failure of B-cell depletion therapy in antibody-mediated autoimmune diseases. It will also explain how key information about disease pathogeny can be provided by the different outcomes observed after B-cell depletion therapy. These findings provide the basis for future innovative therapeutic strategies aiming at an optimized B cell and/or plasma cell depletion to increase long-term disease remission.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD20 , Enfermedades Autoinmunes/terapia , Linfocitos B , Humanos , Depleción Linfocítica , Rituximab/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...