Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neural Circuits ; 17: 1307283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107610

RESUMEN

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.


Asunto(s)
Núcleo Coclear , Localización de Sonidos , Complejo Olivar Superior , Animales , Ratones , Complejo Olivar Superior/fisiología , Núcleo Coclear/fisiología , Núcleo Olivar/fisiología , Localización de Sonidos/fisiología , Neuronas/fisiología , Vías Auditivas/fisiología
2.
Nature ; 611(7935): 320-325, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36261524

RESUMEN

Sustained neuronal activity demands a rapid resupply of synaptic vesicles to maintain reliable synaptic transmission. Such vesicle replenishment is accelerated by submicromolar presynaptic Ca2+ signals by an as-yet unidentified high-affinity Ca2+ sensor1,2. Here we identify synaptotagmin-3 (SYT3)3,4 as that presynaptic high-affinity Ca2+ sensor, which drives vesicle replenishment and short-term synaptic plasticity. Synapses in Syt3 knockout mice exhibited enhanced short-term depression, and recovery from depression was slower and insensitive to presynaptic residual Ca2+. During sustained neuronal firing, SYT3 accelerated vesicle replenishment and increased the size of the readily releasable pool. SYT3 also mediated short-term facilitation under conditions of low release probability and promoted synaptic enhancement together with another high-affinity synaptotagmin, SYT7 (ref. 5). Biophysical modelling predicted that SYT3 mediates both replenishment and facilitation by promoting the transition of loosely docked vesicles to tightly docked, primed states. Our results reveal a crucial role for presynaptic SYT3 in the maintenance of reliable high-frequency synaptic transmission. Moreover, multiple forms of short-term plasticity may converge on a mechanism of reversible, Ca2+-dependent vesicle docking.


Asunto(s)
Vesículas Sinápticas , Sinaptotagminas , Animales , Ratones , Calcio/metabolismo , Ratones Noqueados , Plasticidad Neuronal/fisiología , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagminas/deficiencia , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
3.
Front Cell Neurosci ; 12: 431, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542265

RESUMEN

Astrocytes and oligodendrocytes in different brain regions form panglial networks and the topography of such networks can correlate with neuronal topography and function. Astrocyte-oligodendrocyte networks in the lateral superior olive (LSO)-an auditory brainstem nucleus-were found to be anisotropic with a preferred orientation orthogonally to the tonotopic axis. We hypothesized that such a specialization might be present in other tonotopically organized brainstem nuclei, too. Thus, we analyzed gap junctional coupling in the center of the inferior colliculus (IC)-another nucleus of the auditory brainstem that exhibits tonotopic organization. In acute brainstem slices obtained from mice, IC networks were traced employing whole-cell patch-clamp recordings of single sulforhodamine (SR) 101-identified astrocytes and concomitant intracellular loading of the gap junction-permeable tracer neurobiotin. The majority of dye-coupled networks exhibited an oval topography, which was preferentially oriented orthogonal to the tonotopic axis. Astrocyte processes showed preferentially the same orientation indicating a correlation between astrocyte and network topography. In addition to SR101-positive astrocytes, IC networks contained oligodendrocytes. Using Na+ imaging, we analyzed the capability of IC networks to redistribute small ions. Na+ bi-directionally diffused between SR101-positive astrocytes and SR101-negative cells-presumably oligodendrocytes-showing the functionality of IC networks. Taken together, our results demonstrate that IC astrocytes and IC oligodendrocytes form functional anisotropic panglial networks that are preferentially oriented orthogonal to the tonotopic axis. Thus, our data indicate that the topographic specialization of glial networks seen in IC and LSO might be a general feature of tonotopically organized auditory brainstem nuclei.

4.
J Neurosci ; 37(16): 4301-4310, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28320843

RESUMEN

At chemical synapses, voltage-activated calcium channels (VACCs) mediate Ca2+ influx to trigger action potential-evoked neurotransmitter release. However, the mechanisms by which Ca2+ regulates spontaneous transmission have not been fully determined. We have shown that VACCs are a major trigger of spontaneous release at neocortical inhibitory synapses but not at excitatory synapses, suggesting fundamental differences in spontaneous neurotransmission at GABAergic and glutamatergic synapses. Recently, VACC blockers were reported to reduce spontaneous release of glutamate and it was proposed that there was conservation of underlying mechanisms of neurotransmission at excitatory and inhibitory synapses. Furthermore, it was hypothesized that the different effects on excitatory and inhibitory synapses may have resulted from off-target actions of Cd2+, a nonselective VACC blocker, or other variations in experimental conditions. Here we report that in mouse neocortical neurons, selective and nonselective VACC blockers inhibit spontaneous release at inhibitory but not at excitatory terminals, and that this pattern is observed in culture and slice preparations as well as in synapses from acute slices of the auditory brainstem. The voltage dependence of Cd2+ block of VACCs accounts for the apparent lower potency of Cd2+ on spontaneous release of GABA than on VACC current amplitudes. Our findings indicate fundamental differences in the regulation of spontaneous release at inhibitory and excitatory synapses by stochastic VACC activity that extend beyond the cortex to the brainstem.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry via voltage-activated calcium channels (VACCs) is the major trigger of action potential-evoked synaptic release. However, the role of VACCs in the regulation of spontaneous neurotransmitter release (in the absence of a synchronizing action potential) remains controversial. We show that spontaneous release is affected differently by VACCs at excitatory and inhibitory synapses. At inhibitory synapses, stochastic openings of VACCs trigger the majority of spontaneous release, whereas they do not affect spontaneous release at excitatory synapses. We find this pattern to be wide ranging, holding for large and small synapses in the neocortex and brainstem. These findings indicate fundamental differences of the Ca2+ dependence of spontaneous release at excitatory and inhibitory synapses and heterogeneity of the mechanisms of release across the CNS.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Sinapsis/metabolismo , Animales , Tronco Encefálico/citología , Cadmio/farmacología , Células Cultivadas , Femenino , Masculino , Ratones , Potenciales Postsinápticos Miniatura , Neocórtex/citología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
5.
Glia ; 64(11): 1892-911, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27458984

RESUMEN

Astrocytes form large gap junctional networks that contribute to ion and neurotransmitter homeostasis. Astrocytes concentrate in the lateral superior olive (LSO), a prominent auditory brainstem center. Compared to the LSO, astrocyte density is lower in the region dorsal to the LSO (dLSO) and in the internuclear space between the LSO, the superior paraolivary nucleus (SPN). We questioned whether astrocyte networks exhibit certain properties that reflect the precise neuronal arrangement. Employing whole-cell patch-clamp and concomitant injection of a gap junction-permeable tracer, we analyzed size and orientation of astrocyte networks in LSO, dLSO, and SPN-LSO in acute brainstem slices of mice at postnatal days 10-20. The majority of LSO networks exhibited an oval topography oriented orthogonally to the tonotopic axis, whereas dLSO networks showed no preferred orientation. This correlated with the overall astrocyte morphology in both regions, i.e. LSO astrocyte processes were oriented mainly orthogonally to the tonotopic axis. To assess the spread of small ions within LSO networks, we analyzed the diffusion of Na(+) signals between cells using Na(+) imaging. We found that Na(+) not only diffused between SR101(+) astrocytes, but also from astrocytes into SR101(-) cells. Using PLP-GFP mice for tracing, we could show that LSO networks contained astrocytes and oligodendrocytes. Together, our results demonstrate that LSO astrocytes and LSO oligodendrocytes form functional anisotropic panglial networks that are oriented predominantly orthogonally to the tonotopic axis. Thus, our results point toward an anisotropic ion and metabolite diffusion and a limited glial crosstalk between neighboring isofrequency bands in the LSO. GLIA 2016;64:1892-1911.


Asunto(s)
Astrocitos/fisiología , Red Nerviosa/fisiología , Complejo Olivar Superior/citología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Conexina 30/metabolismo , Conexina 43/metabolismo , Femenino , Uniones Comunicantes/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Red Nerviosa/citología , Oligodendroglía/fisiología , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...