Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231957

RESUMEN

Photodynamic therapy delivers more targeted cell killing than classical chemotherapy. It uses light-absorbing compounds, photosensitizers (PSs), to generate lethal reactive oxygen species (ROS) at sites of localized irradiation. Transition metal complexes are attractive PSs due to their photostability, visible-light absorption, and high ROS yields. Here, we introduce a low-molecular weight, photostable iridium complex, [Ir(thpy)2(benz)]Cl, 1, that localizes to the Golgi apparatus, mitochondria, and endoplasmic reticulum, absorbs visible light, phosphoresces strongly, generates 1O2 with 43% yield, and undergoes cellular elimination after 24 h. 1 shows low dark toxicity and under remarkably low doses (3 min, 20-30 mJ s-1 cm-2) of 405 or 455 nm light, it causes killing of bladder (EJ), malignant melanoma (A375), and oropharyngeal (OPSCC72) cancer cells, with high phototoxic indices > 100-378. 1 is also an efficient PS in 3D melanoma spheroids, with repeated short-time irradiation causing cumulative killing.

2.
Inorg Chem ; 63(19): 8526-8530, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696219

RESUMEN

Photoluminescent coordination complexes of Cr(III) are of interest as near-infrared spin-flip emitters. Here, we explore the preparation, electrochemistry, and photophysical properties of the first two examples of homoleptic N-heterocyclic carbene complexes of Cr(III), featuring 2,6-bis(imidazolyl)pyridine (ImPyIm) and 2-imidazolylpyridine (ImPy) ligands. The complex [Cr(ImPy)3]3+ displays luminescence at 803 nm on the microsecond time scale (13.7 µs) from a spin-flip doublet excited state, which transient absorption spectroscopy reveals to be populated within several picoseconds following photoexcitation. Conversely, [Cr(ImPyIm)2]3+ is nonemissive and has a ca. 500 ps excited-state lifetime.

3.
Nanoscale ; 16(23): 10947-10974, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38804109

RESUMEN

Colloidal quantum dots (CQDs) have been a hot research topic ever since they were successfully fabricated in 1993 via the hot injection method. The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Louis E. Brus and Alexei I. Ekimov for the discovery and synthesis of quantum dots. The Internet of Things (IoT) has also attracted a lot of attention due to the technological advancements and digitalisation of the world. This review first aims to give the basics behind QD physics. After that, the history behind CQD synthesis and the different methods used to synthesize most widely researched CQD materials (CdSe, PbS and InP) are revisited. A brief introduction to what IoT is and how it works is also mentioned. Then, the most widely researched CQD devices that can be used for the main IoT components are reviewed, where the history, physics, the figures of merit (FoMs) and the state-of-the-art are discussed. Finally, the challenges and different methods for integrating CQDs into IoT devices are discussed, mentioning the future possibilities that await CQDs.

4.
J Am Chem Soc ; 146(18): 12836-12849, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683943

RESUMEN

The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.


Asunto(s)
Antineoplásicos , Cationes , Fenazinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Cationes/química , Cationes/farmacología , Fenazinas/química , Fenazinas/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Células HEK293 , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Animales , Nanomedicina Teranóstica , Estructura Molecular
5.
Physiol Behav ; 278: 114520, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492910

RESUMEN

Early-life social experiences shape adult phenotype, yet the underlying behavioral mechanisms remain poorly understood. We manipulated early-life social experience in the highly social African cichlid fish Astatotilapia burtoni to investigate the effects on behavior and stress axis function in juveniles. Juveniles experienced different numbers of social partners in stable pairs (1 partner), stable groups (6 fish; 5 partners), and socialized pairs (a novel fish was exchanged every 5 days; 5 partners). Treatments also differed in group size (groups vs. pairs) and stability (stable vs. socialized). We then measured individual behavior and water-borne cortisol to identify effects of early-life experience. We found treatment differences in behavior across all assays: open field exploration, social cue investigation, dominant behavior, and subordinate behavior. Treatment did not affect cortisol. Principal components (PC) analysis revealed robust co-variation of behavior across contexts, including with cortisol, to form behavioral syndromes sensitive to early-life social experience. PC1 (25.1 %) differed by social partner number: juveniles with more partners (groups and socialized pairs) were more exploratory during the social cue investigation, spent less time in the territory, and were more interactive as dominants. PC5 (8.5 %) differed by stability: socialized pairs were more dominant, spent less time in and around the territory, were more socially investigative, and had lower cortisol than stable groups or pairs. Observations of the home tanks provided insights into the social experiences that may underlie these effects. These results contribute to our understanding of how early-life social experiences are accrued and exert strong, lasting effects on phenotype.


Asunto(s)
Cíclidos , Hidrocortisona , Animales , Conducta Social , Fenotipo
6.
J Biol Inorg Chem ; 29(1): 113-125, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183420

RESUMEN

Two novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as 3IL state. Singlet oxygen generation with good yields (40% for 1 and 82% for 2) was established by detecting 1O2 directly, through its emission at 1270 nm. Photostability studies were also performed to assess the viability of the complexes as photosensitizers (PS) for photodynamic therapy (PDT). Complex 1 was selected as a good candidate to investigate light-activated killing of cells, whilst complex 2 was found to be toxic in the dark and unstable under light. Complex 1 demonstrated high phototoxicity indexes (PI) in the visible region, PI > 250 after irradiation at 405 nm and PI > 150 at 455 nm, in EJ bladder cancer cells.


Asunto(s)
Bencimidazoles , Neoplasias , Fotoquimioterapia , Ligandos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Muerte Celular , Iridio/farmacología , Iridio/química
7.
Chem Sci ; 14(41): 11417-11428, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886100

RESUMEN

To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) trans-acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand 3IL state to the desired charge-separated 3CSS state. We observe two surprising effects of an increased strength of the acceptor in NDI vs. NAP: a ca. 70-fold slow-down of the 3CSS formation-(971 ps)-1vs. (14 ps)-1, and a longer lifetime of the 3CSS (5.9 vs. 1 ns); these are attributed to differences in the driving force ΔGet, and to distance dependence. The 100-fold increase in the rate of intersystem crossing-to sub-500 fs-by the stronger acceptor highlights the role of delocalisation across the heavy-atom containing bridge in this process. The close proximity of several excited states allows one to control the yield of 3CSS from ∼100% to 0% by solvent polarity. The new DBAs offer a versatile platform for investigating the role of bridge vibrations as a tool to control excited state dynamics.

9.
Faraday Discuss ; 244(0): 391-410, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37415486

RESUMEN

The study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring. Two potential mechanisms affecting excited state decay in these complexes involve a transient formation of a solvent adduct, made possible by the opening up of the Cu coordination centre in the excited state due to structural distortion, and by a transient coordination of the O-atom of the phosphine ligand to the copper center. X-ray absorption studies of the ground electronic state have been conducted as a prerequisite for the upcoming X-ray spectroscopy studies which will directly determine structural dynamics. The potential for these complexes to be used in bimolecular applications is confirmed by a significant yield of singlet oxygen production.

11.
J Am Chem Soc ; 145(22): 12081-12092, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224437

RESUMEN

A detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)2]3+ (btmp = 2,6-bis(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (13+), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.7 µs, ϕ = 0.1%) in fluid solution. The excited-state properties of 13+ are probed in detail through a combination of ultrafast transient absorption (TA) and femtosecond-to-picosecond FLUPS. Although TA spectroscopy allows us to observe the evolution of phosphorescent excited states within the doublet manifold, more significantly and for the first time for a complex of Cr(III), we utilize FLUPS to capture the short-lived fluorescence from initially populated quartet excited states immediately prior to the intersystem crossing process. The decay of fluorescence from the low-lying 4MC state therefore allows us to assign a value of (823 fs)-1 to the rate of intersystem crossing. Importantly, the sensitivity of FLUPS to only luminescent states allows us to disentangle the rate of intersystem crossing from other closely associated excited-state events, something which has not been possible in the spectroscopic studies previously reported for luminescent Cr(III) systems.

12.
Phys Chem Chem Phys ; 25(16): 11205-11215, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039571

RESUMEN

Poly(3-alkyl(thienylene-vinylene)) (P3TV) and its longer oligomers have negligibly low photoluminescence quantum yields, however, the reason for their low yields is currently debated. Here, we prepare a series of regioregular (3-dodecyl)thienylene-vinylene oligomers with n = 2-8 repeat units by iterative Horner-Wadsworth-Emmons reactions, and report their steady-state, transient absorption, and emission spectroscopy. The results presented here demonstrate that 3-alkyl(thienylene-vinylene) oligomers form part of the polyene family. The shortest (n = 2) oligomer emits from the bright 1Bu state, while fluorescence in oligomers with n = 3, 4 is from the formally dark 2Ag state, allowed via Herzberg-Teller vibronic coupling to the nearby bright 1Bu state as described for diphenyl-polyenes. Longer oligomers and the polymer are essentially non-emissive as the 2Ag state can no longer intensity-borrow from the 1Bu state. We demonstrate that the spectral shapes, photoluminescence quantum yield, and transient spectral behaviour can all be explained using a polyene model with weak electronic correlations.

13.
Sci Rep ; 13(1): 422, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624137

RESUMEN

Cytoplasmic viscosity is a crucial parameter in determining rates of diffusion-limited reactions. Changes in viscosity are associated with several diseases, whilst nuclear viscosity determines gene integrity, regulation and expression. Yet how drugs including DNA-damaging agents affect viscosity is unknown. We demonstrate the use of a platinum complex, Pt[L]Cl, that localizes efficiently mostly in the nucleus as a probe for nuclear viscosity. The phosphorescence lifetime of Pt[L]Cl is sensitive to viscosity and provides an excellent tool to investigate the impact of DNA damage. We show using Fluorescence Lifetime Imaging (FLIM) that the lifetime of both green and red fluorescent proteins (FP) are also sensitive to changes in cellular viscosity and refractive index. However, Pt[L]Cl proved to be a more sensitive viscosity probe, by virtue of microsecond phosphorescence lifetime versus nanosecond fluorescence lifetime of FP, hence greater sensitivity to bimolecular reactions. DNA damage was inflicted by either a two-photon excitation, one-photon excitation microbeam and X-rays. DNA damage of live cells causes significant increase in the lifetime of either Pt[L]Cl (HeLa cells, 12.5-14.1 µs) or intracellularly expressed mCherry (HEK293 cells, 1.54-1.67 ns), but a decrease in fluorescence lifetime of GFP from 2.65 to 2.29 ns (in V15B cells). These values represent a viscosity change from 8.59 to 20.56 cP as well as significant changes in the refractive index (RI), according to independent calibration. Interestingly DNA damage localized to a submicron region following a laser microbeam induction showed a whole cell viscosity change, with those in the nucleus being greater than the cytoplasm. We also found evidence of a by-stander effect, whereby adjacent un-irradiated cells also showed nuclear viscosity change. Finally, an increase in viscosity following DNA damage was also observed in bacterial cells with an over-expressed mNeonGreen FP, evidenced by the change in its lifetime from 2.8 to 2.4 ns.


Asunto(s)
Daño del ADN , Refractometría , Humanos , Células HeLa , Viscosidad , Células HEK293 , Colorantes Fluorescentes
14.
Inorg Chem ; 61(34): 13281-13292, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960651

RESUMEN

This work demonstrates photocatalytic CO2 reduction by a noble-metal-free photosensitizer-catalyst system in aqueous solution under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine complex, [MnBr(4,4'-{Et2O3PCH2}2-2,2'-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography, and shown to reduce CO2 to CO following photosensitization by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride [Zn(TMPyP)]Cl4 (2) under 625 nm irradiation. This is the first example of 2 employed as a photosensitizer for CO2 reduction. The incorporation of -P(O)(OEt)2 groups, decoupled from the core of the catalyst by a -CH2- spacer, afforded water solubility without compromising the electronic properties of the catalyst. The photostability of the active Mn(I) catalyst over prolonged periods of irradiation with red light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous photocatalyst, working in water and under red light, illustrates further future prospects of intrinsically photounstable Mn(I) complexes as solar-driven catalysts in an aqueous environment.

17.
mSystems ; 7(4): e0045422, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35924857

RESUMEN

Campylobacter jejuni is a microaerophilic foodborne zoonotic pathogen of worldwide concern as the leading cause of bacterial gastroenteritis. Many strains are increasingly antibiotic resistant and new methods of control are required to reduce food-chain contamination. One possibility is photodynamic inactivation (PDI) using violet-blue (VB) light, to which C. jejuni is highly susceptible. Here, we show that flavin and protoporphyrin IX are major endogenous photosensitizers and that exposure of cells to VB light increases intracellular reactive oxygen species (ROS) to high levels, as indicated by a dichlorodihydrofluorescein reporter. Unusually for an oxygen-respiring bacterium, C. jejuni employs several ROS-sensitive iron-sulfur cluster enzymes in central metabolic pathways; we show that VB light causes rapid inactivation of both pyruvate and 2-oxoglutarate oxidoreductases, thus interrupting the citric acid cycle. Cells exposed to VB light also lose heme from c-type cytochromes, restricting electron transport, likely due to irreversible oxidation of heme-ligating cysteine residues. Evaluation of global gene expression changes by RNAseq and probabilistic modeling showed a two-stage protein damage/oxidative stress response to VB light, driven by specific regulators, including HspR, PerR, Fur, and RacR. Deletion mutant analysis showed that superoxide dismutase and the cytochrome CccA were particularly important for VB light survival and that abolishing repression of chaperones and oxidative stress resistance genes by HcrA, HspR, or PerR increased tolerance to VB light. Our results explain the high innate sensitivity of C. jejuni to VB light and provide new insights that may be helpful in exploiting PDI for novel food-chain interventions to control this pathogen. IMPORTANCE Campylobacteriosis caused by C. jejuni is one of the most widespread zoonotic enteric diseases worldwide and represents an enormous human health and economic burden, compounded by the emergence of antibiotic-resistant strains. New interventions are urgently needed to reduce food-chain contamination. Although UV light is well known to be bactericidal, it is highly mutagenic and problematic for continuous exposure in food production facilities; in contrast, narrow spectrum violet-blue (VB) light is much safer. We confirmed that C. jejuni is highly susceptible to VB light and then identified some of the global regulatory networks involved in responding to photo-oxidative damage. The identification of damaged cellular components underpins efforts to develop commercial applications of VB light-based technologies.


Asunto(s)
Campylobacter jejuni , Humanos , Especies Reactivas de Oxígeno/metabolismo , Campylobacter jejuni/genética , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Hemo/metabolismo
18.
Methods Cell Biol ; 162: 69-87, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707023

RESUMEN

The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.


Asunto(s)
Complejos de Coordinación , Nanopartículas del Metal , Electrones , Oro , Microscopía Electrónica , Microscopía Fluorescente , Flujo de Trabajo
19.
Nat Chem ; 12(9): 789-790, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807881
20.
Inorg Chem ; 59(15): 10430-10438, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32687331

RESUMEN

Herein is presented a molecular dyad comprised of a [Ru(bpy)3]2+ photosensitizer and an anthraquinone (AQ) acceptor coupled by an ethynyl linker ([Ru(bpy)2(bpy-cc-AQ)]2+) in which activation/deactivation of photoinduced electron-transfer from the [Ru(bpy)3]2+ photosensitizer to the AQ acceptor is achieved and characterized as a function of the dielectric constant and hydrogen-bond donating ability of the solvent used. It is demonstrated that the rate of photoinduced electron-transfer can be modulated over several orders of magnitude (105-1011 s-1) by choice of solvent. Nanosecond transient absorption spectra are dominated by MLCT signals and exhibit identical decay kinetics to the corresponding emission signals. Ultrafast transient absorption and time-resolved infrared spectroscopies provide direct evidence for the formation of the charge-separated (CS) state and rapid (on the order of a few picoseconds) establishment of an excited-state pseudoequilibrium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...