Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Aging ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834882

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

2.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789417

RESUMEN

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Homeostasis del Telómero , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Células K562 , Homeostasis del Telómero/genética , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Sistemas CRISPR-Cas
3.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714703

RESUMEN

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Asunto(s)
Aberraciones Cromosómicas , Hematopoyesis Clonal , Mosaicismo , Humanos , Hematopoyesis Clonal/genética , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Janus Quinasa 2/genética , Telomerasa/genética , Telomerasa/metabolismo , Pérdida de Heterocigocidad , Estudios Transversales , Mutación , Persona de Mediana Edad , Células Madre Hematopoyéticas/metabolismo , Polimorfismo de Nucleótido Simple , Anciano
4.
medRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37905118

RESUMEN

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well-understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our estimates of mCA fitness were correlated (R 2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using a theoretical probability distribution. Individuals with lymphoid-associated mCAs had a significantly higher white blood cell count and faster clonal expansion rate. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified TCL1A , NRIP1 , and TERT locus variants as modulators of mCA clonal expansion rate.

5.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37745614

RESUMEN

The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation, including eQTL mapping, has been challenging due to small effects. Experimental perturbation approaches offer a complementary and powerful approach to mapping trans-regulators. We used CRISPR knockouts of 84 genes in primary CD4+ T cells to perturb an immune cell gene network, targeting both inborn error of immunity (IEI) disease transcription factors (TFs) and background TFs matched in constraint and expression level, but without a known immune disease association. We developed a novel Bayesian structure learning method called Linear Latent Causal Bayes (LLCB) to estimate the gene regulatory network from perturbation data and observed 211 directed edges among the genes which could not be detected in existing CD4+ trans-eQTL data. We used LLCB to characterize the differences between the IEI and background TFs, finding that the gene groups were highly interconnected, but that IEI TFs were much more likely to regulate immune cell specific pathways and immune GWAS genes. We further characterized nine coherent gene programs based on downstream effects of the TFs and linked these modules to regulation of GWAS genes, finding that canonical JAK-STAT family members are regulated by KMT2A, a global epigenetic regulator. These analyses reveal the trans-regulatory cascade from upstream epigenetic regulator to intermediate TFs to downstream effector cytokines and elucidate the logic linking immune GWAS genes to key signaling pathways.

6.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577640

RESUMEN

Due to the abundance of single cell RNA-seq data, a number of methods for predicting expression after perturbation have recently been published. Expression prediction methods are enticing because they promise to answer pressing questions in fields ranging from developmental genetics to cell fate engineering and because they are faster, cheaper, and higher-throughput than their experimental counterparts. However, the absolute and relative accuracy of these methods is poorly characterized, limiting their informed use, their improvement, and the interpretation of their predictions. To address these issues, we created a benchmarking platform that combines a panel of large-scale perturbation datasets with an expression forecasting software engine that encompasses or interfaces to current methods. We used our platform to systematically assess methods, parameters, and sources of auxiliary data. We found that uninformed baseline predictions, which were not always included in prior evaluations, yielded the same or better mean absolute error than benchmarked methods in all test cases. These results cast doubt on the ability of current expression forecasting methods to provide mechanistic insights or to rank hypotheses for experimental follow-up. However, given the rapid pace of innovation in the field, new approaches may yield more accurate expression predictions. Our platform will serve as a neutral benchmark to improve methods and to identify contexts in which expression prediction can succeed.

8.
Nat Med ; 29(7): 1662-1670, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322115

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer's disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 10-5), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Precancerosas , Humanos , Hematopoyesis Clonal , Enfermedad de Alzheimer/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Mutación/genética
9.
Sci Adv ; 9(17): eabm4945, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126548

RESUMEN

Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.


Asunto(s)
Mutación de Línea Germinal , Hematopoyesis , Humanos , Persona de Mediana Edad , Mutación , Mutación Missense , Fenotipo
10.
Nature ; 616(7958): 747-754, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046084

RESUMEN

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Asunto(s)
Hematopoyesis Clonal , Susceptibilidad a Enfermedades , Hepatitis , Cirrosis Hepática , Animales , Ratones , Hematopoyesis Clonal/genética , Hepatitis/genética , Inflamación/genética , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Oportunidad Relativa , Progresión de la Enfermedad
11.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
12.
Blood ; 141(18): 2214-2223, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36652671

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is a common form of age-related somatic mosaicism that is associated with significant morbidity and mortality. CHIP mutations can be identified in peripheral blood samples that are sequenced using approaches that cover the whole genome, the whole exome, or targeted genetic regions; however, differentiating true CHIP mutations from sequencing artifacts and germ line variants is a considerable bioinformatic challenge. We present a stepwise method that combines filtering based on sequencing metrics, variant annotation, and population-based associations to increase the accuracy of CHIP calls. We apply this approach to ascertain CHIP in ∼550 000 individuals in the UK Biobank complete whole exome cohort and the All of Us Research Program initial whole genome release cohort. CHIP ascertainment on this scale unmasks recurrent artifactual variants and highlights the importance of specialized filtering approaches for several genes, including TET2 and ASXL1. We show how small changes in filtering parameters can considerably increase CHIP misclassification and reduce the effect size of epidemiological associations. Our high-fidelity call set refines previous population-based associations of CHIP with incident outcomes. For example, the annualized incidence of myeloid malignancy in individuals with small CHIP clones is 0.03% per year, which increases to 0.5% per year among individuals with very large CHIP clones. We also find a significantly lower prevalence of CHIP in individuals of self-reported Latino or Hispanic ethnicity in All of Us, highlighting the importance of including diverse populations. The standardization of CHIP calling will increase the fidelity of CHIP epidemiological work and is required for clinical CHIP diagnostic assays.


Asunto(s)
Hematopoyesis Clonal , Salud Poblacional , Humanos , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Mutación , Genética Humana
13.
Nat Commun ; 13(1): 5350, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097025

RESUMEN

Age-related changes to the genome-wide DNA methylation (DNAm) pattern observed in blood are well-documented. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the age-related acquisition and expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is associated with blood cancer and coronary artery disease (CAD). Epigenetic regulators DNMT3A and TET2 are the two most frequently mutated CHIP genes. Here, we present results from an epigenome-wide association study for CHIP in 582 Cardiovascular Health Study (CHS) participants, with replication in 2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show that DNMT3A and TET2 CHIP have distinct and directionally opposing genome-wide DNAm association patterns consistent with their regulatory roles, albeit both promoting self-renewal of HSCs. Mendelian randomization analyses indicate that a subset of DNAm alterations associated with these two leading CHIP genes may promote the risk for CAD.


Asunto(s)
Hematopoyesis Clonal , Enfermedad de la Arteria Coronaria , Hematopoyesis Clonal/genética , Enfermedad de la Arteria Coronaria/genética , Metilación de ADN/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos
14.
Cell Genom ; 2(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35530816

RESUMEN

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.

15.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385311

RESUMEN

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

16.
Cureus ; 14(1): e21627, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35228975

RESUMEN

Introduction The purpose of our study is to determine in-hospital outcomes of acute myocardial infarction in patients with hematological malignancies and their subtypes. Method Patient data were obtained from the nationwide inpatient sample (NIS) database between the years 2009-2014. Patients with hematological cancer subtypes and acute MI (non-ST segment elevation myocardial infarction and ST-segment elevation myocardial infarction (NSTEMI/STEMI) were identified using validated international classification of diseases (ninth revision) and clinical modification (ICD-9-CM) codes. Statistical analysis using the chi-square test was performed to determine the hospital outcomes of acute MI in patients with hematological cancers and subtypes. Results The prevalence of acute myocardial infarction was 2.4% in patients with hematological neoplasms (N=3,027,800). Amongst the subtypes of blood cancers, the highest prevalence of acute MI was seen in lymphocytic leukemia (2.9%). The mortality of MI in patients with hematological malignancies was 16.8% vs 8.8% in patients with non-hematological malignancies, in-hospital costs were $25469 ± 36763 vs. $20534 ± 24767, and length of in-hospital stay was 8.3 ± 10 vs 6.3 ± 7.8 days. Amongst the hematological cancer subtypes, the highest mortality of acute MI was found in myeloid leukemia (23%) followed by multiple myeloma (MM) (17.9%), lymphocytic leukemia (15.9%), and lymphoma (14.4%). The length of stay and hospitalization cost was highest for myeloid leukemia, followed by MM, lymphocytic leukemia, and lymphoma. Conclusion This study showed that acute MI in patients with hematological malignancies has higher in-hospital mortality, length of stay, and cost. Amongst the blood neoplasm subtypes the highest mortality, length of hospital stay, and hospitalization cost were found in myeloid leukemia.

17.
J Clin Invest ; 132(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990411

RESUMEN

BACKGROUNDCurative gene therapies for sickle cell disease (SCD) are currently undergoing clinical evaluation. The occurrence of myeloid malignancies in these trials has prompted safety concerns. Individuals with SCD are predisposed to myeloid malignancies, but the underlying causes remain undefined. Clonal hematopoiesis (CH) is a premalignant condition that also confers significant predisposition to myeloid cancers. While it has been speculated that CH may play a role in SCD-associated cancer predisposition, limited data addressing this issue have been reported.METHODSHere, we leveraged 74,190 whole-genome sequences to robustly study CH in SCD. Somatic mutation calling methods were used to assess CH in all samples and comparisons between individuals with and without SCD were performed.RESULTSWhile we had sufficient power to detect a greater than 2-fold increased rate of CH, we found no detectable variation in rate or clone properties between individuals affected by SCD and controls. The rate of CH in individuals with SCD was unaltered by hydroxyurea use.CONCLUSIONSWe did not observe an increased risk for acquiring detectable CH in SCD, at least as measured by whole-genome sequencing. These results should help guide ongoing efforts and further studies that seek to better define the risk factors underlying myeloid malignancy predisposition in SCD and help ensure that curative therapies can be more safely applied.FUNDINGNew York Stem Cell Foundation and the NIH.


Asunto(s)
Anemia de Células Falciformes/genética , Hematopoyesis Clonal/genética , Anemia de Células Falciformes/terapia , Femenino , Humanos , Masculino , Secuenciación Completa del Genoma
18.
Blood Cancer Discov ; 2(5): 500-517, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34568833

RESUMEN

Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.


Asunto(s)
Hematopoyesis Clonal , Síndromes Mielodisplásicos , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos , Ratones , Síndromes Mielodisplásicos/genética , Empalme del ARN/genética , Factores de Transcripción/genética
19.
Aging Cell ; 20(6): e13366, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34050697

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10-7 ) to 3.08 years (EEAA, p < 3.7 × 10-18 ). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10-8 ) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10-6 ) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions.


Asunto(s)
Hematopoyesis Clonal/genética , Epigenómica/métodos , Envejecimiento , Humanos , Factores de Riesgo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...