Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139150

RESUMEN

The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.


Asunto(s)
Enfermedades Neurodegenerativas , Proteína Fosfatasa 1 , Animales , Humanos , Ratones , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones Noqueados , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas/metabolismo
3.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784920

RESUMEN

The Cpi-17 (ppp1r14) gene family is an evolutionarily conserved, vertebrate specific group of protein phosphatase 1 (PP1) inhibitors. When phosphorylated, Cpi-17 is a potent inhibitor of myosin phosphatase (MP), a holoenzyme complex of the regulatory subunit Mypt1 and the catalytic subunit PP1. Myosin phosphatase dephosphorylates the regulatory myosin light chain (Mlc2) and promotes actomyosin relaxation, which in turn, regulates numerous cellular processes including smooth muscle contraction, cytokinesis, cell motility, and tumor cell invasion. We analyzed zebrafish homologs of the Cpi-17 family, to better understand the mechanisms of myosin phosphatase regulation. We found single homologs of both Kepi (ppp1r14c) and Gbpi (ppp1r14d) in silico, but we detected no expression of these genes during early embryonic development. Cpi-17 (ppp1r14a) and Phi-1 (ppp1r14b) each had two duplicate paralogs, (ppp1r14aa and ppp1r14ab) and (ppp1r14ba and ppp1r14bb), which were each expressed during early development. The spatial expression pattern of these genes has diverged, with ppp1r14aa and ppp1r14bb expressed primarily in smooth muscle and skeletal muscle, respectively, while ppp1r14ab and ppp1r14ba are primarily expressed in neural tissue. We observed that, in in vitro and heterologous cellular systems, the Cpi-17 paralogs both acted as potent myosin phosphatase inhibitors, and were indistinguishable from one another. In contrast, the two Phi-1 paralogs displayed weak myosin phosphatase inhibitory activity in vitro, and did not alter myosin phosphorylation in cells. Through deletion and chimeric analysis, we identified that the difference in specificity for myosin phosphatase between Cpi-17 and Phi-1 was encoded by the highly conserved PHIN (phosphatase holoenzyme inhibitory) domain, and not the more divergent N- and C- termini. We also showed that either Cpi-17 paralog can rescue the knockdown phenotype, but neither Phi-1 paralog could do so. Thus, we provide new evidence about the biochemical and developmental distinctions of the zebrafish Cpi-17 protein family.


Asunto(s)
Proteínas de Peces/genética , Genes Duplicados/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Musculares/genética , Proteínas/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Proteínas de Peces/clasificación , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/clasificación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/clasificación , Proteínas Musculares/metabolismo , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Filogenia , Proteínas/clasificación , Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Gene ; 675: 15-26, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29960069

RESUMEN

Myosin phosphatase is an evolutionarily conserved regulator of actomyosin contractility, comprised of a regulatory subunit (Mypt1), and a catalytic subunit (PP1). Zebrafish has become an ideal model organism for the study of the genetic and cell physiological role of the myosin phosphatase in morphogenesis and embryonic development. We identified and characterized a novel splice variant of Mypt1 (ppp1r12a-tv202) from zebrafish, which is widely expressed during early embryonic development. Importantly, mutant alleles and antisense morpholinos that have been used to demonstrate the important role of Mypt1 in early development, not only disrupt the longer splice variants, but also tv202. The protein product of ppp1r12a-tv202 (Mypt1-202) contains the PP1-binding N-terminus, but lacks the regulatory C-terminus, which contains two highly conserved inhibitory phosphorylation sites. We observed that the protein product of tv202 assembled a constitutively active myosin phosphatase uninhibited by kinases such as Zipk. Thus, we propose that Mypt1-202 plays an important role in maintaining baseline Mlc2 dephosphorylation and actomyosin relaxation during early zebrafish development.


Asunto(s)
Empalme Alternativo/genética , Fosfatasa de Miosina de Cadena Ligera/química , Fosfatasa de Miosina de Cadena Ligera/genética , Pez Cebra/genética , Citoesqueleto de Actina/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animales , Animales Modificados Genéticamente , Dominio Catalítico/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Isoenzimas/química , Isoenzimas/genética , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Pez Cebra/embriología
5.
Artículo en Inglés | MEDLINE | ID: mdl-26482085

RESUMEN

Mitochondria exhibit dynamic locomotion and spatial rearrangement. This movement is necessary for a cell to maintain basic metabolic functions, and disruption of motility often results in cell death. Miro is a mitochondrial outer membrane Rho GTPase essential for mitochondrial movement and distribution in diverse systems, including yeast, animals, and plants. We sought to study the previously uncharacterized Miro protein family in zebrafish. We confirmed that, like human Miro, the zebrafish Miro proteins (Rhot1a, Rhot1b, and Rhot2) localize to mitochondria in mammalian tissue culture cells by both biochemical fractionation and immunofluorescent colocalization. In addition, using whole mount in situ hybridization, we observed ubiquitous expression of all three mRNAs throughout development. By microinjecting three antisense morpholino oligonucleotides targeted to each of the rhot genes, we knocked down all three proteins simultaneously in developing zebrafish embryos. The triple morphants demonstrated a dose-dependent defect in posterior body-axis elongation, while a single knockdown of each protein at the same dose produced no effect. This phenotype could be rescued with human Miro1 mRNA and is most likely due to increased cell death. Taken altogether, this research demonstrates the importance of the Rhot proteins during vertebrate development.


Asunto(s)
Mitocondrias/enzimología , Homología de Secuencia de Ácido Nucleico , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Humanos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Pez Cebra/crecimiento & desarrollo , Proteínas de Unión al GTP rho/química
6.
Int J Mol Sci ; 15(7): 11597-613, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24983477

RESUMEN

Zipper-interacting protein kinase (ZIPK) is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/genética , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Especificidad de la Especie , Pez Cebra
7.
PLoS One ; 8(9): e75766, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040418

RESUMEN

BACKGROUND: The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. METHODOLOGY/PRINCIPAL FINDINGS: We observed that in zebrafish two paralogous genes encoding PP1ß, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that zebrafish have two genes encoding PP1ß, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.


Asunto(s)
Dominio Catalítico , Fosfatasa de Miosina de Cadena Ligera/genética , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Homología de Secuencia de Ácido Nucleico , Pez Cebra/genética , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Animales , Miosinas Cardíacas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/química , Fosforilación , Proteína Fosfatasa 1/química , Pez Cebra/embriología , Pez Cebra/metabolismo
8.
Methods Mol Biol ; 839: 53-68, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22218892

RESUMEN

Gastrulation is a complex set of cellular rearrangements that establish the overall shape of the body plan during development. In addition to being an essential and fascinating aspect of development, the cells of the gastrulating zebrafish embryo also provide an ideal in vivo system to study the interplay of cell polarity and movement in a native 3D environment. During gastrulation, zebrafish mesodermal cells undergo a series of conversions from initial non-polarized amoeboid cell movements to more mesenchymal and finally highly polarized and intercalative cell behaviors. Many of the cellular behavior changes of these cells are under the control of the RhoA pathway, which in turn is regulated by many signals, including non-canonical Wnts. The goal of this chapter is to provide researchers with the necessary protocols to examine changes in cell polarity and movement in the developing zebrafish embryo.


Asunto(s)
Polaridad Celular , Forma de la Célula , Embrión no Mamífero/citología , Gastrulación , Pez Cebra/embriología , Animales , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Embrión no Mamífero/metabolismo , Gastrulación/efectos de los fármacos , Hibridación in Situ , Inyecciones , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
9.
PLoS One ; 5(5): e10712, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20502708

RESUMEN

BACKGROUND: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9.


Asunto(s)
Empalme Alternativo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Muerte Celular , Secuencia Conservada/genética , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
10.
Development ; 136(14): 2375-84, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19515695

RESUMEN

Rho-dependent amoeboid cell movement is a crucial mechanism in both tumor cell invasion and morphogenetic cell movements during fish gastrulation. Amoeboid movement is characterized by relatively non-polarized cells displaying a high level of bleb-like protrusions. During gastrulation, zebrafish mesodermal cells undergo a series of conversions from amoeboid cell behaviors to more mesenchymal and finally highly polarized and intercalative cell behaviors. We demonstrate that Myosin phosphatase, a complex of Protein phosphatase 1 and the scaffolding protein Mypt1, functions to maintain the precise balance between amoeboid and mesenchymal cell behaviors required for cells to undergo convergence and extension. Importantly, Mypt1 has different cell-autonomous and non-cell-autonomous roles. Loss of Mypt1 throughout the embryo causes severe convergence defects, demonstrating that Mypt1 is required for the cell-cell interactions involved in dorsal convergence. By contrast, mesodermal Mypt1 morphant cells transplanted into wild-type hosts undergo dorsally directed cell migration, but they fail to shut down their protrusive behavior and undergo the normal intercalation required for extension. We further show that Mypt1 activity is regulated in embryos by Rho-mediated inhibitory phosphorylation, which is promoted by non-canonical Wnt signaling. We propose that Myosin phosphatase is a crucial and tightly controlled regulator of cell behaviors during gastrulation and that understanding its role in early development also provides insight into the mechanism of cancer cell invasion.


Asunto(s)
Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Gastrulación/fisiología , Humanos , Células L , Ratones , Modelos Biológicos , Fosfatasa de Miosina de Cadena Ligera/antagonistas & inhibidores , Fosfatasa de Miosina de Cadena Ligera/genética , Fenotipo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
11.
Biochem Biophys Res Commun ; 375(4): 512-516, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18725198

RESUMEN

Gravin (AKAP12, SSeCKS) is a scaffolding protein that acts as a potent inhibitor of tumor metastasis in vivo and in vitro, and regulates morphogenesis during vertebrate gastrulation. Despite being implicated in many cellular processes, surprisingly little is known about the mechanism by which Gravin elicits cell shape changes. In this work, we use in vitro cell spreading assays to demonstrate that the Gravin N-terminus containing the three MARCKS-like basic regions (BRs) is necessary and sufficient to regulate cell shape in vitro. We show that the conserved phosphorylation sites in the BRs are essential for their function in these assays. We further demonstrate that the Gravin BRs are necessary for in vivo function during gastrulation in zebrafish. Together, these results provide an important step forward in understanding the mechanism of Gravin function in cell shape regulation and provide valuable insight into how Gravin acts as a cytoskeletal regulator.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Forma de la Célula , Proteínas de Pez Cebra/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Células COS , Membrana Celular/enzimología , Movimiento Celular/genética , Forma de la Célula/genética , Chlorocebus aethiops , Estructura Terciaria de Proteína , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
12.
Genes Dev ; 21(12): 1559-71, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17575056

RESUMEN

Convergent extension of the mesoderm is the major driving force of vertebrate gastrulation. During this process, mesodermal cells move toward the future dorsal side of the embryo, then radically change behavior as they initiate extension of the body axis. How cells make this transition in behavior is unknown. We have identified the scaffolding protein and tumor suppressor Gravin as a key regulator of this process in zebrafish embryos. We show that Gravin is required for the conversion of mesodermal cells from a highly migratory behavior to the medio-laterally intercalative behavior required for body axis extension. In the absence of Gravin, paraxial mesodermal cells fail to shut down the protrusive activity mediated by the Rho/ROCK/Myosin II pathway, resulting in embryos with severe extension defects. We propose that Gravin functions as an essential scaffold for regulatory proteins that suppress the migratory behavior of the mesoderm during gastrulation, and suggest that this function also explains how Gravin inhibits invasive behaviors in metastatic cells.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Proteínas/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Proteínas de Anclaje a la Quinasa A/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Tipificación del Cuerpo , Proteínas de Ciclo Celular , Movimiento Celular , Forma de la Célula , Gástrula/citología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Modelos Biológicos , Datos de Secuencia Molecular , Miosina Tipo II/metabolismo , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteína de Unión al GTP rhoA/metabolismo
13.
J Biol Chem ; 280(16): 15903-11, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15703180

RESUMEN

Cellular functions of protein phosphatase-1 (PP1), a major eukaryotic serine/threonine phosphatase, are defined by the association of PP1 catalytic subunits with endogenous protein inhibitors and regulatory subunits. Many PP1 regulators share a consensus RVXF motif, which docks within a hydrophobic pocket on the surface of the PP1 catalytic subunit. Although these regulatory proteins also possess additional PP1-binding sites, mutations of the RVXF sequence established a key role of this PP1-binding sequence in the function of PP1 regulators. WT PP1alpha, the C-terminal truncated PP1alpha-(1-306), a chimeric PP1alpha containing C-terminal sequences from PP2A, another phosphatase, PP1alpha-(1-306) with the RVXF-binding pocket substitutions L289R, M290K, and C291R, and PP2A were analyzed for their regulation by several mammalian proteins. These studies established that modifications of the RVXF-binding pocket had modest effects on the catalytic activity of PP1, as judged by recognition of substrates and sensitivity to toxins. However, the selected modifications impaired the sensitivity of PP1 to the inhibitor proteins, inhibitor-1 and inhibitor-2. In addition, they impaired the ability of PP1 to bind neurabin-I, the neuronal regulatory subunit, and G(M), the skeletal muscle glycogen-targeting subunit. These data suggested that differences in RVXF interactions with the hydrophobic pocket dictate the affinity of PP1 for cellular regulators. Substitution of a distinct RVXF sequence in inhibitor-1 that enhanced its binding and potency as a PP1 inhibitor emphasized the importance of the RVXF sequence in defining the function of this and other PP1 regulators. Our studies suggest that the diversity of RVXF sequences provides for dynamic physiological regulation of PP1 functions in eukaryotic cells.


Asunto(s)
Dominio Catalítico , Fosfoproteínas Fosfatasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Humanos , Datos de Secuencia Molecular , Mutación , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 1
14.
J Biol Chem ; 279(47): 48904-14, 2004 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-15345721

RESUMEN

Inhibitor-1 (I-1) is a selective inhibitor of protein phosphatase-1 (PP1) and regulates several PP1-dependent signaling pathways, including cardiac contractility and regulation of learning and memory. The human I-1 gene has been spliced to generate two alternative mRNAs, termed I-1alpha and I-1beta, encoding polypeptides that differ from I-1 in their C-terminal sequences. Reverse transcription-PCR established that I-1alpha and I-1beta mRNAs are expressed in a developmental and tissue-specific manner. Functional analysis of I-1 in a Saccharomyces cerevisiae strain dependent on human I-1 for viability established that a novel domain encompassing amino acids 77-110 is necessary for PP1 inhibition in yeast. Expression of human I-1 in S. cerevisiae with a partial loss-of-function eukaryotic initiation factor-2alpha (eIF2alpha) kinase (Gcn2p) mutation permitted growth during amino acid starvation, consistent with the inhibition of Glc7p/PP1, the yeast eIF2alpha phosphatase. In contrast, human I-1alpha, which lacks amino acids 83-134, and I-1 with C-terminal deletions were significantly less effective in promoting yeast growth under starvation conditions. These data suggest that C-terminal sequences of I-1 enhance regulation of the eukaryotic eIF2alpha phosphatase. In vitro studies established that C-terminal sequences, deleted in both I-1alpha and I-1beta, enhance PP1 binding and inhibition. Expression of full-length and C-terminally truncated I-1 in HEK293T cells established the importance of the I-1 C terminus in transducing cAMP signals that promote eIF2alpha phosphorylation. This study demonstrates that multiple domains in I-1 target cellular PP1 complexes and establishes I-1 as a cellular regulator of eIF2alpha phosphorylation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Hormonas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas/química , Empalme Alternativo , Aminoácidos/química , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Exones , Eliminación de Gen , Glutatión Transferasa/metabolismo , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Nucleares , Péptidos/química , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosforilasa Fosfatasa/metabolismo , Fosforilación , Plásmidos/metabolismo , Isoformas de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteína Fosfatasa 1 , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal , Relación Estructura-Actividad , Factores de Tiempo , Distribución Tisular , eIF-2 Quinasa/metabolismo
15.
EMBO J ; 22(21): 5734-45, 2003 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-14592972

RESUMEN

It has been known for over a decade that inhibition of protein phosphatase 1 (PP1) activity prevents entry into M phase, but the relevant substrate has not been identified. We report here that PP1 is required for dephosphorylation of the Cdc2-directed phosphatase Cdc25 at Ser287 (of Xenopus Cdc25; Ser216 of human Cdc25C), a site that suppresses Cdc25 during interphase. Moreover, PP1 recognizes Cdc25 directly by interacting with a PP1-binding motif in the Cdc25 N-terminus. We have also found that 14-3-3 binding to phospho-Ser287 protects Cdc25 from premature dephosphorylation. Upon entry into M phase, 14-3-3 removal from Cdc25 precedes Ser287 dephosphorylation, suggesting the existence of a phosphatase- independent pathway for 14-3-3 removal from Cdc25. We show here that this dissociation of 14-3-3 from Cdc25 requires the activity of the cyclin-dependent kinase Cdk2, providing a molecular explanation for the previously reported requirement for Cdk2 in promoting mitotic entry. Collectively, our data clarify several steps important for Cdc25 activation and provide new insight into the role of PP1 in Cdc2 activation and mitotic entry.


Asunto(s)
Mitosis/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Fosfatasas cdc25/metabolismo , Proteínas 14-3-3 , Animales , Secuencia de Bases , Sitios de Unión , Proteína Quinasa CDC2/metabolismo , Quinasas CDC2-CDC28/metabolismo , Quinasa 2 Dependiente de la Ciclina , ADN Complementario/genética , Femenino , Técnicas In Vitro , Mutagénesis Sitio-Dirigida , Oocitos/citología , Oocitos/metabolismo , Fosforilación , Proteína Fosfatasa 1 , Xenopus , Proteínas de Xenopus , Fosfatasas cdc25/química , Fosfatasas cdc25/genética
16.
Mol Cell Biol ; 23(4): 1292-303, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12556489

RESUMEN

The growth arrest and DNA damage-inducible protein, GADD34, associates with protein phosphatase 1 (PP1) and promotes in vitro dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2, (eIF-2 alpha). In this report, we show that the expression of human GADD34 in cultured cells reversed eIF-2 alpha phosphorylation induced by thapsigargin and tunicamycin, agents that promote protein unfolding in the endoplasmic reticulum (ER). GADD34 expression also reversed eIF-2 alpha phosphorylation induced by okadaic acid but not that induced by another phosphatase inhibitor, calyculin A (CA), which is a result consistent with PP1 being a component of the GADD34-assembled eIF-2 alpha phosphatase. Structure-function studies identified a bipartite C-terminal domain in GADD34 that encompassed a canonical PP1-binding motif, KVRF, and a novel RARA sequence, both of which were required for PP1 binding. N-terminal deletions of GADD34 established that while PP1 binding was necessary, it was not sufficient to promote eIF-2 alpha dephosphorylation in cells. Imaging of green fluorescent protein (GFP)-GADD34 proteins showed that the N-terminal 180 residues directed the localization of GADD34 at the ER and that GADD34 targeted the alpha isoform of PP1 to the ER. These data provide new insights into the mode of action of GADD34 in assembling an ER-associated eIF-2 alpha phosphatase that regulates protein translation in mammalian cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Diferenciación , Sitios de Unión , Proteínas de Ciclo Celular , División Celular/fisiología , Células Cultivadas , Daño del ADN/fisiología , Inhibidores Enzimáticos/farmacología , Humanos , Toxinas Marinas , Datos de Secuencia Molecular , Oxazoles/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosforilación , Proteína Fosfatasa 1 , Subunidades de Proteína , Proteínas/efectos de los fármacos , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Tapsigargina/farmacología , Tunicamicina/farmacología
17.
Curr Protoc Mol Biol ; Chapter 18: Unit 18.10, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-18265323

RESUMEN

Reversible protein phosphorylation is recognized as a major mechanism regulating the physiology of plant and animal cells. Virtually every biochemical process within eukaryotic cells is controlled by the covalent modification of key regulatory proteins. This in turn dictates the cellular response to a variety of physiological and environmental stimuli; errors in signals transduced by phosphoproteins contribute to many human diseases. Thus, defining protein phosphorylation events, and specifically, the phosphoproteins involved, is crucial for obtaining a better understanding of the physiological events that distinguish normal and diseased states. Protein phosphatase inhibitors are useful when deciphering physiological events regulated by reversible protein phosphorylation but the hormonal stimuli or signaling pathways involved are not known. They are also useful in analyzing the impact of hormones and other physiological stimuli on the function of a specific phosphoprotein. This unit describes protocols for inhibiting cellular phosphorylation activity with okadaic acid, microcystin-LR, and PP2B/calcineurin and a widely utilized strategy for inhibiting protein tyrosine phosphatases.


Asunto(s)
Ciclosporina/farmacología , Microcistinas/farmacología , Ácido Ocadaico/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Piretrinas/farmacología , Vanadatos/farmacología , Animales , Inhibidores de la Calcineurina , Células Cultivadas/efectos de los fármacos , Células Cultivadas/enzimología , Mamíferos , Toxinas Marinas , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 2/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores
18.
Curr Protoc Protein Sci ; Chapter 13: Unit 13.10, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-18429239

RESUMEN

Reversible protein phosphorylation is recognized as a major mechanism regulating the physiology of plant and animal cells. Virtually every biochemical process within eukaryotic cells is controlled by the covalent modification of key regulatory proteins. This in turn dictates the cellular response to a variety of physiological and environmental stimuli; errors in signals transduced by phosphoproteins contribute to many human diseases. Thus, defining protein phosphorylation events, and specifically, the phosphoproteins involved, is crucial for obtaining a better understanding of the physiological events that distinguish normal and diseased states. Protein phosphatase inhibitors are useful when deciphering physiological events regulated by reversible protein phosphorylation but the hormonal stimuli or signaling pathways involved are not known. They are also useful in analyzing the impact of hormones and other physiological stimuli on the function of a specific phosphoprotein. This unit describes protocols for inhibiting the cellular PP1/PP2A activity with okadaic acid, microcystin-LR, and PP2B/calcineurin and a widely utilized strategy for inhibiting protein tyrosine phosphatases.


Asunto(s)
Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Ciclosporina/metabolismo , Inhibidores Enzimáticos/metabolismo , Humanos , Insecticidas/metabolismo , Toxinas Marinas , Microcistinas/metabolismo , Ácido Ocadaico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Piretrinas/metabolismo , Vanadatos/metabolismo
19.
J Biol Chem ; 277(48): 46535-43, 2002 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-12270929

RESUMEN

Inhibitor-2 (I-2) bound protein phosphatase-1 (PP1) and several PP1-binding proteins from rat brain extracts, including the actin-binding proteins, neurabin I and neurabin II. Neurabins from rat brain lysates were sedimented by I-2 and its structural homologue, I-4. The central domain of both neurabins bound PP1 and I-2, and mutation of a conserved PP1-binding motif abolished neurabin binding to both proteins. Microcystin-LR, a PP1 inhibitor, also attenuated I-2 binding to neurabins. Immunoprecipitation of neurabin I established its association with PP1 and I-2 in HEK293T cells and suggested that PP1 mediated I-2 binding to neurabins. The C terminus of I-2, although not required for PP1 binding, facilitated PP1 recruitment by neurabins, which also targeted I-2 to polymerized F-actin. Mutations that attenuated PP1 binding to I-2 and neurabin I suggested distinct and overlapping sites for these two proteins on the PP1 catalytic subunit. Immunocytochemistry in epithelial cells and cultured hippocampal neurons showed that endogenous neurabin II and I-2 colocalized at actin-rich structures, consistent with the ability of neurabins to target the PP1.I-2 complex to actin cytoskeleton and regulate cell morphology.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas/metabolismo , Animales , Secuencia de Bases , Dominio Catalítico , Células Cultivadas , Proteínas Cromosómicas no Histona , Cartilla de ADN , Proteínas de Unión al ADN , Hipocampo/citología , Hipocampo/metabolismo , Chaperonas de Histonas , Humanos , Inmunohistoquímica , Toxinas Marinas , Microcistinas , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Unión Proteica , Proteína Fosfatasa 1 , Proteínas/química , Ratas , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...