Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 130(4): 941-952, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37671445

RESUMEN

Command systems integrate sensory information and then activate the interneurons and motor neurons that mediate behavior. Much research has established that the higher-order projection neurons that constitute these systems can play a key role in specifying the nature of the motor activity induced, or determining its parametric features. To a large extent, these insights have been obtained by contrasting activity induced by stimulating one neuron (or set of neurons) to activity induced by stimulating a different neuron (or set of neurons). The focus of our work differs. We study one type of motor program, ingestive feeding in the mollusc Aplysia californica, which can either be triggered when a single projection neuron (CBI-2) is repeatedly stimulated or can be triggered by projection neuron coactivation (e.g., activation of CBI-2 and CBI-3). We ask why this might be an advantageous arrangement. The cellular/molecular mechanisms that configure motor activity are different in the two situations because the released neurotransmitters differ. We focus on an important consequence of this arrangement, the fact that a persistent state can be induced with repeated CBI-2 stimulation that is not necessarily induced by CBI-2/3 coactivation. We show that this difference can have consequences for the ability of the system to switch from one type of activity to another.NEW & NOTEWORTHY We study a type of motor program that can be induced either by stimulating a higher-order projection neuron that induces a persistent state, or by coactivating projection neurons that configure activity but do not produce a state change. We show that when an activity is configured without a state change, it is possible to immediately return to an intermediate state that subsequently can be converted to any type of motor program.


Asunto(s)
Aplysia , Conducta Alimentaria , Animales , Conducta Alimentaria/fisiología , Aplysia/fisiología , Ingestión de Alimentos/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Ganglios de Invertebrados/fisiología
2.
Research (Wash D C) ; 6: 0060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930762

RESUMEN

Locomotion in mollusc Aplysia is implemented by a pedal rolling wave, a type of axial locomotion. Well-studied examples of axial locomotion (pedal waves in Drosophila larvae and body waves in leech, lamprey, and fish) are generated in a segmented nervous system via activation of multiple coupled central pattern generators (CPGs). Pedal waves in molluscs, however, are generated by a single pedal ganglion, and it is unknown whether there are single or multiple CPGs that generate rhythmic activity and phase shifts between different body parts. During locomotion in intact Aplysia, bursting activity in the parapedal commissural nerve (PPCN) was found to occur during tail contraction. A cluster of 20 to 30 P1 root neurons (P1Ns) on the ventral surface of the pedal ganglion, active during the pedal wave, were identified. Computational cluster analysis revealed that there are 2 phases to the motor program: phase I (centered around 168°) and phase II (centered around 357°). PPCN activity occurs during phase II. The majority of P1Ns are motoneurons. Coactive P1Ns tend to be electrically coupled. Two classes of pedal interneurons (PIs) were characterized. Class 1 (PI1 and PI2) is active during phase I. Their axons make a loop within the pedal ganglion and contribute to locomotor pattern generation. They are electrically coupled to P1Ns that fire during phase I. Class 2 (PI3) is active during phase II and innervates the contralateral pedal ganglion. PI3 may contribute to bilateral coordination. Overall, our findings support the idea that Aplysia pedal waves are generated by a single CPG.

3.
J Neurophysiol ; 127(6): 1445-1459, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35507477

RESUMEN

These experiments focus on an interneuron (B63) that is part of the feeding central pattern generator (CPG) in Aplysia californica. Previous work has established that B63 is critical for program initiation regardless of the type of evoked activity. B63 receives input from a number of different elements of the feeding circuit. Program initiation occurs reliably when some are activated, but we show that it does not occur reliably with activation of others. When program initiation is reliable, modulatory neuropeptides are released. For example, previous work has established that an ingestive input to the feeding CPG, cerebral buccal interneuron 2 (CBI-2), releases feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP-2). Afferents with processes in the esophageal nerve (EN) that trigger egestive motor programs release small cardioactive peptide (SCP). Previous studies have described divergent cellular and molecular effects of FCAP/CP-2 and SCP on the feeding circuit that specify motor activity. Here, we show that FCAP/CP-2 and SCP additionally increase the B63 excitability. Thus, we show that peptides that have well-characterized divergent effects on the feeding circuit additionally act convergently at the level of a single neuron. Since convergent effects of FCAP/CP-2 and SCP are not necessary for specifying the type of network output, we ask why they might be important. Our data suggest that they have an impact during a task switch, i.e., when there is a switch from egestive to ingestive activity.NEW & NOTEWORTHY The activity of multifunctional central pattern generators (CPGs) is often configured by neuromodulators that exert divergent effects that are necessary to specify motor output. We demonstrate that ingestive and egestive inputs to the feeding CPG in Aplysia act convergently (as well as divergently). We ask why this convergence may be important and suggest that it may be a mechanism for a type of arousal that occurs during task switching.


Asunto(s)
Generadores de Patrones Centrales , Neuropéptidos , Animales , Aplysia/fisiología , Conducta Alimentaria/fisiología , Ganglios de Invertebrados/fisiología , Interneuronas/fisiología , Neuropéptidos/farmacología
4.
Front Neural Circuits ; 15: 685222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177471

RESUMEN

Multiple projection neurons are often activated to initiate behavior. A question that then arises is, what is the unique functional role of each neuron activated? We address this issue in the feeding system of Aplysia. Previous experiments identified a projection neuron [cerebral buccal interneuron 2 (CBI-2)] that can trigger ingestive motor programs but only after it is repeatedly stimulated, i.e., initial programs are poorly defined. As CBI-2 stimulation continues, programs become progressively more ingestive (repetition priming occurs). This priming results, at least in part, from persistent actions of peptide cotransmitters released from CBI-2. We now show that in some preparations repetition priming does not occur. There is no clear seasonal effect; priming and non-priming preparations are encountered throughout the year. CBI-2 is electrically coupled to a second projection neuron, cerebral buccal interneuron 3 (CBI-3). In preparations in which priming does not occur, we show that ingestive activity is generated when CBI-2 and CBI-3 are coactivated. Programs are immediately ingestive, i.e., priming is not necessary, and a persistent state is not induced. Our data suggest that dynamic changes in the configuration of activity can vary and be determined by the complement of projection neurons that trigger activity.


Asunto(s)
Aplysia , Conducta Alimentaria , Animales , Ingestión de Alimentos , Ganglios de Invertebrados , Interneuronas , Neuronas
5.
J Neurosci ; 41(10): 2152-2163, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33500278

RESUMEN

Modulators are generally expected to establish a network configuration that is appropriate for the current circumstances. We characterize a situation where the opposite is apparently observed. A network effect of a peptide modulator is counterproductive in that it tends to impede rather than promote the creation of the configuration that is appropriate when the modulator is released. This raises a question: why does release occur? We present data that strongly suggest that it impacts task switching. Our experiments were conducted in an Aplysia feeding network that generates egestive and ingestive motor programs. Initial experiments focused on egestive activity and the neuron B8. As activity becomes egestive, there is an increase in synaptic drive to B8 and its firing frequency increases (Wang et al., 2019). We show that, as this occurs, there is also a persistent current that develops in B8 that is outward rather than inward. Dynamic clamp introduction of this current decreases excitability. When there is an egestive-ingestive task switch in Aplysia, negative biasing is observed (i.e., a bout of egestive activity has a negative impact on a subsequent attempt to initiate an ingestive response) (Proekt et al., 2004). Using an in vitro analog of negative biasing, we demonstrate that the outward current that develops during egestive priming plays an important role in establishing this phenomenon. Our data suggest that, although the outward current induced as activity becomes egestive is counterproductive at the time, it plays an anticipatory role in that it subsequently impacts task switching.SIGNIFICANCE STATEMENT In this study, we identify a peptide-induced circuit modification (induction of an outward current) that does not immediately promote the establishment of a behaviorally appropriate network configuration. We ask why this might occur, and present data that strongly suggest that it plays an important role during task switching. Specifically, our data suggest that the outward current we characterize plays a role in the negative biasing that is seen in the mollusc Aplysia when there is a transition from egestive to ingestive activity. It is possible that the mechanism that we describe operates in other species. A negative effect of egestion on subsequent ingestion is observed throughout the animal kingdom.


Asunto(s)
Potenciales de Acción/fisiología , Aplysia/fisiología , Neuronas Motoras/fisiología , Animales , Conducta Alimentaria/fisiología , Ganglios de Invertebrados/fisiología
6.
Sci Adv ; 6(25)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32937495

RESUMEN

Behavioral variability often arises from variable activity in the behavior-generating neural network. The synaptic mechanisms underlying this variability are poorly understood. We show that synaptic noise, in conjunction with weak feedforward excitation, generates variable motor output in the Aplysia feeding system. A command-like neuron (CBI-10) triggers rhythmic motor programs more variable than programs triggered by CBI-2. CBI-10 weakly excites a pivotal pattern-generating interneuron (B34) strongly activated by CBI-2. The activation properties of B34 substantially account for the degree of program variability. CBI-10- and CBI-2-induced EPSPs in B34 vary in amplitude across trials, suggesting that there is synaptic noise. Computational studies show that synaptic noise is required for program variability. Further, at network state transition points when synaptic conductance is low, maximum program variability is promoted by moderate noise levels. Thus, synaptic strength and noise act together in a nonlinear manner to determine the degree of variability within a feedforward network.

7.
Sci Rep ; 10(1): 549, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953443

RESUMEN

Some synapses show two forms of short-term plasticity, homosynaptic facilitation, and a plasticity in which the efficacy of transmission is modified by subthreshold changes in the holding potential of the presynaptic neuron. In a previous study we demonstrated a further interactive effect. We showed that depolarizing changes in the presynaptic holding potential can increase the rate at which facilitation occurs. These experiments studied synaptic transmission between an Aplysia sensory neuron (B21) and its postsynaptic follower, the motor neuron (B8). We have also shown that subthreshold depolarizations of B21 produce widespread increases in its [Ca2+]i via activation of a nifedipine-sensitive current. To determine whether it is this change in 'background' calcium that modifies synaptic transmission we compared the facilitation observed at the B21-B8 synapse under control conditions to the facilitation observed in nifedipine. Nifedipine had a depressing effect. Other investigators studying facilitation have focused on Cares (i.e., the calcium that remains in a neuron after spiking). Our results indicate that facilitation can also be impacted by calcium channels opened before spiking begins.


Asunto(s)
Aplysia/citología , Calcio/metabolismo , Sinapsis/metabolismo , Animales , Aplysia/metabolismo , Neuronas Motoras/citología , Células Receptoras Sensoriales/citología
8.
J Neurosci ; 39(44): 8705-8716, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31548235

RESUMEN

The characteristics of a network are determined by parameters that describe the intrinsic properties of the component neurons and their synapses. Degeneracy occurs when more than one set of parameters produces the same (or very similar) output. It is not clear whether network degeneracy impacts network function or is simply a reflection of the fact that, although it is important for a network to be able to generate a particular output, it is not important how this is achieved. We address this issue in the feeding network of the mollusc Aplysia In this system, there are two stimulation paradigms that generate egestive motor programs: repetition priming and positive biasing. We demonstrate that circuit parameters differ in the 2 cases (e.g., egestive repetition priming requires activity in an interneuron, B20, which is not essential for positive biasing). We show that degeneracy has consequences for task switching. If egestive repetition priming is immediately followed by stimulation of an ingestive input to the feeding central pattern generator, the first few cycles of activity are egestive (not ingestive). In this situation, there is a task switch cost. This "cost" is in part due to the potentiating effect of egestive repetition priming on B20. In contrast, there is no switch cost after positive biasing. Stimulation of the ingestive central pattern generator input immediately triggers ingestive activity. Our results indicate that the mechanisms used to pattern activity can impact network function in that they can determine how readily a network can switch from one configuration to another.SIGNIFICANCE STATEMENT A particular pattern of neural activity can be generated by more than one set of circuit parameters. How or whether this impacts network function is unclear. We address this issue in the feeding network of Aplysia and demonstrate that degeneracy in network function can have consequences for task switching. Namely, we show that, when egestive activity is generated via one set of circuit modifications, an immediate switch to ingestive activity is not possible. In contrast, rapid transitions to ingestive activity are possible if egestive activity is generated via a different set of circuit modifications.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas/fisiología , Memoria Implícita/fisiología , Potenciales de Acción , Animales , Aplysia , Ganglios de Invertebrados/fisiología , Actividad Motora , Vías Nerviosas/fisiología
9.
Sci Rep ; 9(1): 9058, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227744

RESUMEN

Network states are often determined by modulators that alter the synaptic and cellular properties of the constituent neurons. Frequently neuromodulators act via second messengers, consequently their effects can persist. This persistence at the cellular/molecular level determines the maintenance of the state at the network level. Here we study a feeding network in Aplysia. In this network, persistent modulation supports the maintenance of an ingestive state, biasing the network to generate ingestive motor programs. Neuropeptides that exert cyclic adenosine monophosphate (cAMP) dependent effects play an important role in inducing the ingestive state. Most commonly, modulatory effects exerted through cAMP signaling are persistent as a consequence of PKA activation. This is not the case in the neurons we study. Instead maintenance of the network state depends on the persistence of cAMP itself. Data strongly suggest that this is a consequence of the direct activation of a cyclic nucleotide gated current.


Asunto(s)
AMP Cíclico/fisiología , Red Nerviosa/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Activación del Canal Iónico , Células Receptoras Sensoriales/fisiología
10.
Front Neural Circuits ; 12: 78, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333732

RESUMEN

Neurons can contain both neuropeptides and "classic" small molecule transmitters. Much progress has been made in studies designed to determine the functional significance of this arrangement in experiments conducted in invertebrates and in the vertebrate autonomic nervous system. In this review article, we describe some of this research. In particular, we review early studies that related peptide release to physiological firing patterns of neurons. Additionally, we discuss more recent experiments informed by this early work that have sought to determine the functional significance of peptide cotransmission in the situation where peptides are released from neurons that are part of (i.e., are intrinsic to) a behavior generating circuit in the CNS. In this situation, peptide release will presumably be tightly coupled to the manner in which a network is activated. For example, data obtained in early studies suggest that peptide release will be potentiated when behavior is executed rapidly and intervals between periods of neural activity are relatively short. Further, early studies demonstrated that when neural activity is maintained, there are progressive changes (e.g., increases) in the amount of peptide that is released (even in the absence of a change in neural activity). This suggests that intrinsic peptidergic modulators in the CNS are likely to exert effects that are manifested dynamically in an activity-dependent manner. This type of modulation is likely to differ markedly from the modulation that occurs when a peptide hormone is present at a relatively fixed concentration in the blood.


Asunto(s)
Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Animales , Humanos
11.
J Neurosci ; 38(29): 6475-6490, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29934354

RESUMEN

Many neural networks are multitasking and receive modulatory input, which configures activity. As a result, these networks can enter a relatively persistent state in which they are biased to generate one type of output as opposed to another. A question we address is as follows: what happens to this type of state when the network is forced to task-switch? We address this question in the feeding system of the mollusc Aplysia This network generates ingestive and egestive motor programs. We focus on an identified neuron that is selectively active when programs are ingestive. Previous work has established that the increase in firing frequency observed during ingestive programs is at least partially mediated by an excitability increase. Here we identify the underlying cellular mechanism as the induction of a cAMP-dependent inward current. We ask how this current is impacted by the subsequent induction of egestive activity. Interestingly, we demonstrate that this task-switch does not eliminate the inward current but instead activates an outward current. The induction of the outward current obviously reduces the net inward current in the cell. This produces the decrease in excitability and firing frequency required for the task-switch. Importantly, however, the persistence of the inward current is not impacted. It remains present and coexists with the outward current. Consequently, when effects of egestive priming and the outward current dissipate, firing frequency and excitability remain above baseline levels. This presumably has important functional implications in that it will facilitate a return to ingestive activity.SIGNIFICANCE STATEMENT Under physiological conditions, an animal generating a particular type of motor activity can be forced to at least briefly task-switch. In some circumstances, this involves the temporary induction of an "antagonistic" or incompatible motor program. For example, ingestion can be interrupted by a brief period of egestive activity. In this type of situation, it is often desirable for behavioral switching to occur rapidly and efficiently. In this report, we focus on a particular aspect of this type of task-switch. We determine how the priming that occurs when a multitasking network repeatedly generates one type of motor activity can be retained during the execution of an incompatible motor program.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas/fisiología , Memoria Implícita/fisiología , Potenciales de Acción/fisiología , Animales , Aplysia , Ganglios de Invertebrados/fisiología , Actividad Motora/fisiología , Red Nerviosa
12.
ACS Chem Neurosci ; 9(8): 2041-2053, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543430

RESUMEN

When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. Furthermore, apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12). Previous studies have demonstrated that CBI-12 contains two other peptides, FCAP/CP2. In addition, CBI-12 and CP2 promote shortening of the protraction phase of motor programs. Here, we demonstrate that FCAP shortens protraction. Moreover, we show that apSPTR-GF-DP2 also shortens protraction. Surprisingly, apSPTR-GF-DP2 does not increase the excitability of retraction interneuron B64. B64 terminates protraction and is modulated by FCAP/CP2 and CBI-12. Instead, we show that apSPTR-GF-DP2 and CBI-12 increase B20 excitability and B20 activity can shorten protraction. Taken together, these data indicate that different CBI-12 peptides target different sets of pattern-generating interneurons to exert similar modulatory actions. These findings provide the first definitive evidence for SPTR-GF's role in modulation of feeding, and a form of molecular degeneracy by multiple peptide cotransmitters in single identified neurons.


Asunto(s)
Aplysia/metabolismo , Actividad Motora/fisiología , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Aplysia/citología , Biología Computacional , Ingestión de Alimentos/fisiología , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/genética , Procesamiento Proteico-Postraduccional , Ratas Sprague-Dawley , Alineación de Secuencia
13.
ACS Chem Neurosci ; 9(8): 1917-1927, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29309115

RESUMEN

Neuropeptides are present in species throughout the animal kingdom and generally exert actions that are distinct from those of small molecule transmitters. It has, therefore, been of interest to define the unique behavioral role of this class of substances. Progress in this regard has been made in experimentally advantageous invertebrate preparations. We focus on one such system, the feeding circuit in the mollusc Aplysia. We review research conducted over several decades that played an important role in establishing that peptide cotransmitters are released under behaviorally relevant conditions. We describe how this was accomplished. For example, we describe techniques developed to purify novel peptides, localize them to identified neurons, and detect endogenous peptide release. We also describe physiological experiments that demonstrated that peptides are bioactive under behaviorally relevant conditions. The feeding system is like others in that peptides exert effects that are both convergent and divergent. Work in the feeding system clearly illustrates how this creates potential for behavioral flexibility. Finally, we discuss experiments that determined physiological consequences of one of the hallmark features of peptidergic modulation, its persistence. Research in the feeding system demonstrated that this persistence can change network state and play an important role in determining network output.


Asunto(s)
Aplysia/metabolismo , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuropéptidos/metabolismo , Animales , Neuronas/metabolismo
14.
J Biol Chem ; 292(46): 18775-18789, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28924050

RESUMEN

A better understanding of neuromodulation in a behavioral system requires identification of active modulatory transmitters. Here, we used identifiable neurons in a neurobiological model system, the mollusc Aplysia, to study neuropeptides, a diverse class of neuromodulators. We took advantage of two types of feeding neurons, B48 and B1/B2, in the Aplysia buccal ganglion that might contain different neuropeptides. We performed a representational difference analysis (RDA) by subtraction of mRNAs in B48 versus mRNAs in B1/B2. The RDA identified an unusually long (2025 amino acids) peptide precursor encoding Aplysia leucokinin-like peptides (ALKs; e.g. ALK-1 and ALK-2). Northern blot analysis revealed that, compared with other ganglia (e.g. the pedal-pleural ganglion), ALK mRNA is predominantly present in the buccal ganglion, which controls feeding behavior. We then used in situ hybridization and immunohistochemistry to localize ALKs to specific neurons, including B48. MALDI-TOF MS on single buccal neurons revealed expression of 40 ALK precursor-derived peptides. Among these, ALK-1 and ALK-2 are active in the feeding network; they shortened the radula protraction phase of feeding motor programs triggered by a command-like neuron. We also found that this effect may be mediated by the ALK-stimulated enhancement of activity of an interneuron, which has previously been shown to terminate protraction. We conclude that our multipronged approach is effective for determining the structure and defining the diverse functions of leucokinin-like peptides. Notably, the ALK precursor is the first verified nonarthropod precursor for leucokinin-like peptides with a novel, marked modulatory effect on a specific parameter (protraction duration) of feeding motor programs.


Asunto(s)
Aplysia/fisiología , Ganglios de Invertebrados/fisiología , Neuropéptidos/metabolismo , Animales , Aplysia/química , Aplysia/citología , Aplysia/genética , Conducta Alimentaria , Ganglios de Invertebrados/química , Ganglios de Invertebrados/metabolismo , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/análisis , Neuropéptidos/genética , Procesamiento Proteico-Postraduccional , ARN Mensajero/análisis , ARN Mensajero/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Sheng Li Xue Bao ; 69(4): 461-466, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28825105

RESUMEN

Improvements in the imaging of neural circuits are essential for studies of network function in both invertebrates and vertebrates. Therefore, CLARITY, a new imaging enhancement technique developed for mouse brains has attracted broad interest from researchers working on other species. We studied the potential of a modified version of CLARITY to enhance the imaging of ganglia in an invertebrate Aplysia. For example, we have modified the hydrogel solution and designed a small container for the Aplysia ganglia. The ganglia were first processed for immunohistochemistry, and then for CLARITY. We examined the compatibility of these techniques and the extent to which the imaging of fluorescence improved using confocal microscopy. We found that CLARITY did indeed enhance the imaging of CP2 immunopositive neurons in Aplysia ganglia. For example, it improved visualization of small, weak immunoreactive neurons deep in the ganglia. Our modifications of CLARITY make this new method suitable for future use in Aplysia experiments. Furthermore, our techniques are likely to facilitate imaging in other invertebrate ganglia.


Asunto(s)
Aplysia/anatomía & histología , Ganglios de Invertebrados/diagnóstico por imagen , Aumento de la Imagen/métodos , Animales , Inmunohistoquímica , Neuronas/citología
16.
J Neurophysiol ; 118(3): 1861-1870, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679841

RESUMEN

Many central pattern generator (CPG)-mediated behaviors are episodic, meaning that they are not continuously ongoing; instead, there are pauses between bouts of activity. This raises an interesting possibility, that the neural networks that mediate these behaviors are not operating under "steady-state" conditions; i.e., there could be dynamic changes in motor activity as it stops and starts. Research in the feeding system of the mollusk Aplysia californica has demonstrated that this can be the case. After a pause, initial food grasping responses are relatively weak. With repetition, however, responses strengthen. In this review we describe experiments that have characterized cellular/molecular mechanisms that produce these changes in motor activity. In particular, we focus on cumulative effects of modulatory neuropeptides. Furthermore, we relate Aplysia research to work in other systems and species, and develop a hypothesis that postulates that changes in response magnitude are a reflection of an efficient feeding strategy.


Asunto(s)
Aplysia/fisiología , Generadores de Patrones Centrales/fisiología , Conducta Alimentaria , Memoria Implícita , Animales , Movimiento
17.
Anal Chem ; 88(23): 11868-11876, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27788334

RESUMEN

A receptor binding class of d-amino acid-containing peptides (DAACPs) is formed in animals from an enzymatically mediated post-translational modification of ribosomally translated all-l-amino acid peptides. Although this modification can be required for biological actions, detecting it is challenging because DAACPs have the same mass as their all-l-amino acid counterparts. We developed a suite of mass spectrometry (MS) protocols for the nontargeted discovery of DAACPs and validated their effectiveness using neurons from Aplysia californica. The approach involves the following three steps, with each confirming and refining the hits found in the prior step. The first step is screening for peptides resistant to digestion by aminopeptidase M. The second verifies the presence of a chiral amino acid via acid hydrolysis in deuterium chloride, labeling with Marfey's reagent, and liquid chromatography-mass spectrometry to determine the chirality of each amino acid. The third involves synthesizing the putative DAACPs and comparing them to the endogenous standards. Advantages of the method, the d-amino acid-containing neuropeptide discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do not require peptide standards. Using these protocols, we report that two peptides from the Aplysia achatin-like neuropeptide precursor exist as GdYFD and SdYADSKDEESNAALSDFA. Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA was not. The discovery funnel provides an effective means to characterize DAACPs in the nervous systems of animals in a nontargeted manner.


Asunto(s)
Aminoácidos/análisis , Aplysia/química , Neuropéptidos/análisis , Aminoácidos/metabolismo , Animales , Aplysia/citología , Aplysia/metabolismo , Antígenos CD13/metabolismo , Espectrometría de Masas , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo
18.
Curr Opin Neurobiol ; 41: 62-67, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27589602

RESUMEN

Often distinct elements serve similar functions within a network. However, it is unclear whether this network degeneracy is beneficial, or merely a reflection of tighter regulation of overall network performance relative to individual neuronal properties. We review circumstances where data strongly suggest that degeneracy is beneficial in that it makes network function more robust. Importantly, network degeneracy is likely to have functional consequences that are not widely appreciated. This is likely to be true when network activity is configured by modulators with persistent actions, and the history of network activity potentially impacts subsequent functioning. Data suggest that degeneracy in this context may be important for the creation of latent memories, and for state-dependent task switching.


Asunto(s)
Neuronas/fisiología , Animales , Humanos , Memoria/fisiología , Degeneración Nerviosa , Red Nerviosa/fisiología
19.
J Neurophysiol ; 116(4): 1821-1830, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466134

RESUMEN

Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to "prime" motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for "task" switching, i.e., the cessation of one type of motor activity and the initiation of another.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Ingestión de Alimentos/fisiología , Interneuronas/fisiología , Actividad Motora/fisiología , Memoria Implícita/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Aplysia , Generadores de Patrones Centrales/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/fisiología , Interneuronas/efectos de los fármacos , Microelectrodos , Modelos Animales , Actividad Motora/efectos de los fármacos , Neuropéptidos/administración & dosificación , Neuropéptidos/metabolismo , Memoria Implícita/efectos de los fármacos
20.
PLoS One ; 11(1): e0147335, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26796097

RESUMEN

One emerging principle is that neuromodulators, such as neuropeptides, regulate multiple behaviors, particularly motivated behaviors, e.g., feeding and locomotion. However, how neuromodulators act on multiple neural networks to exert their actions remains poorly understood. These actions depend on the chemical form of the peptide, e.g., an alternation of L- to D-form of an amino acid can endow the peptide with bioactivity, as is the case for the Aplysia peptide GdFFD (where dF indicates D-phenylalanine). GdFFD has been shown to act as an extrinsic neuromodulator in the feeding network, while the all L-amino acid form, GFFD, was not bioactive. Given that both GdFFD/GFFD are also present in pedal neurons that mediate locomotion, we sought to determine whether they impact locomotion. We first examined effects of both peptides on isolated ganglia, and monitored fictive programs using the parapedal commissural nerve (PPCN). Indeed, GdFFD was bioactive and GFFD was not. GdFFD increased the frequency with which neural activity was observed in the PPCN. In part, there was an increase in bursting spiking activity that resembled fictive locomotion. Additionally, there was significant activity between bursts. To determine how the peptide-induced activity in the isolated CNS is translated into behavior, we recorded animal movements, and developed a computer program to automatically track the animal and calculate the path of movement and velocity of locomotion. We found that GdFFD significantly reduced locomotion and induced a foot curl. These data suggest that the increase in PPCN activity observed in the isolated CNS during GdFFD application corresponds to a reduction, rather than an increase, in locomotion. In contrast, GFFD had no effect. Thus, our study suggests that GdFFD may act as an intrinsic neuromodulator in the Aplysia locomotor network. More generally, our study indicates that physiological and behavioral analyses should be combined to evaluate peptide actions.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Locomoción/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Neuropéptidos/farmacología , Animales , Aplysia , Electrofisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA