Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Gels ; 9(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975707

RESUMEN

This paper discusses two observations that are unique with respect to the mechanics of double network (DN) hydrogels, forced elasticity driven by water diffusion and consolidation, which are analogous to the so-called Gough-Joule effects in rubbers. A series of DN hydrogels were synthesized from 2-acrylamido-2-methylpropane sulfuric acid (AMPS), 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). Drying of AMPS/AAm DN hydrogels was monitored by extending the gel specimens to different stretch ratios and holding them until all the water evaporated. At high extension ratios, the gels underwent plastic deformation. Water diffusion measurements performed on AMPS/AAm DN hydrogels that were dried at different stretch ratios indicated that the diffusion mechanism deviated from Fickian behavior at extension ratios greater than two. Study of the mechanical behavior of AMPS/AAm and SAPS/AAm DN hydrogels during tensile and confined compression tests showed that despite their large water content, DN hydrogels can retain water during large-strain tensile or compression deformations.

2.
Gels ; 10(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38247751

RESUMEN

This paper describes a simple method to synthesize tough hydrogels from a highly cross-linked neutral network. It was found that applying alkaline hydrolysis to a highly cross-linked hydrogel synthesized from acrylamide (AAm) can increase its swelling ratio dramatically. Double-network (DN) hydrogels synthesized from polymerization of loosely cross-linked AAm networks inside a highly cross-linked AAm gel were not tough. However, repeating the same recipes with a second polymerization step to synthesize a DN hydrogel from a hydrolyzed highly cross-linked AAm gel resulted in tough hydrogels. Those gels exhibited finite tensile behavior similar to that of conventional DN hydrogels. Moreover, craze-like patterns were observed during tensile loading of a DN hydrogel synthesized from a hydrolyzed highly cross-linked first network and a loosely cross-linked second network. The patterns remained in the gel even after strain hardening at high stretch ratios. The craze-like pattern formation was suppressed by increasing the concentration of cross-linking monomer in the second polymerization step. Crack propagation in DN hydrogels synthesized using hydrolysis was also studied by applying a tensile load on notched specimens.

3.
ACS Macro Lett ; 10(4): 503-509, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549231

RESUMEN

This study examines the brittle-to-ductile transition of sulfonated polystyrene ionomers (SPS) with different counterions. The polystyrene precursor was unentangled and had two ionic groups per chain on average. Thus, its terminal relaxation time was comparable to the lifetime of the associating ionic groups. Three types of ionomer samples were used to tune the association lifetime: (1) fully neutralized SPS with different alkali-metal counterions, (2) fully neutralized SPS with mixed sodium and cesium counterions, and (3) partially neutralized SPS with sodium or cesium counterions. For all three systems, the brittle-to-ductile transition could be represented by a diagram of two Weissenberg numbers, Wi and WiR, defined with respect to the terminal and Rouse relaxation times, respectively. A flowable region existed at sufficiently low Wi, independent of WiR. At higher Wi, a brittle-to-ductile transition of the ionomer melt occurred above a critical value of WiR. To achieve ductility during the application of rapid elongational flow, the Rouse-type motions should be sufficiently slow relative to the rate of ion-dissociation, so that the strain-induced breakup of the ionic cross-links would not cause very strong chain retraction that may further lead to the macroscopic fracture.

4.
Soft Matter ; 15(2): 227-236, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30543258

RESUMEN

An energy dissipation mechanism during deformation is required to impart toughness to hydrogels. Here we describe how in situ small angle X-ray scattering (SAXS) provides insight into possible energy dissipation mechanisms for a tough hydrogel based on an amphiphilic copolymer where nanoscale associations of the hydrophobic moieties act as effective crosslinks. The mechanical properties of the hydrogels are intimately coupled with the nanostructure that provides reversible crosslinks and evolves during deformation. As the extension rate increases, more mechanical energy is dissipated from rearrangements of the crosslinks. The scattering is consistent with hopping of hydrophobes between the nanoscale aggregates as the primary rearrangement mechanism. This rearrangement changes the network conformation that leads to non-affine deformation, where the change in the nanostructure dimension from SAXS is less than 15% of the total macroscopic strain. These nanostructure changes are rate dependent and correlated with the relaxation time of the hydrogel. At low strain rate (0.15% s-1), no significant change of the nanostructure was observed, whereas at higher strain rates (1.5% s-1 and 8.4% s-1) significant nanostructure anisotropy occurred during extension. These differences are attributed to the ability for the network chains to rearrange on the time scale of the deformation; when the characteristic time for extension is longer than the average segmental relaxation time, no significant change in nanostructure occurs on uniaxial extension. These results illustrate the importance of strain rate in the mechanical characterization and consideration of relaxation time in the design of tough hydrogels with reversible crosslinks.

5.
Anal Chem ; 90(6): 4079-4088, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29473414

RESUMEN

In the inertial limit, the resonance frequency of the quartz crystal microbalance (QCM) is related to the coupled mass on the quartz sensor through the Sauerbrey expression that relates the mass to the change in resonance frequency. However, when the thickness of the film is sufficiently large, the relationship becomes more complicated and both the frequency and damping of the crystal resonance must be considered. In this regime, a rheological model of the material must be used to accurately extract the adhered film's thickness, shear modulus, and viscoelastic phase angle from the data. In the present work we examine the suitability of two viscoelastic models, a simple Voigt model ( Physica Scripta 1999, 59, 391-396) and a more realistic power-law model ( Langmuir 2015, 31, 4008-4017), to extract the rheological properties of a thermoresponsive hydrogel film. By changing temperature and initial dry film thickness of the gel, the operation of QCM was traversed from the Sauerbrey limit, where viscous losses do not impact the frequency, through the regime where the QCM response is sensitive to viscoelastic properties. The density-shear modulus and the viscoelastic phase angle from the two models are in good agreement when the shear wavelength ratio, d/λ n, is in the range of 0.05-0.20, where d is the film thickness and λ n is the wavelength of the mechanical shear wave at the nth harmonic. We further provide a framework for estimating the physical properties of soft materials in the megahertz regime by using the physical behavior of polyelectrolyte complexes. This provides the user with an approximate range of allowable film thicknesses for accurate viscoelastic analysis with either model, thus enabling better use of the QCM-D in soft materials research.

6.
ACS Appl Mater Interfaces ; 9(40): 35349-35359, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28925687

RESUMEN

We report a first-order like sharp surface wettability transition with varying film thickness dependent morphology in cast films of an amphiphilic triblock copolymer. Films composed of poly(2-(N-ethylperfluorooctanesulfonamido) ethyl methyl acrylate), poly(FOSM), and poly(N,N'-dimethyl acrylamide), poly(DMA), with thickness (h) in the transition-range, 200 < h < 300 nm, exhibited an abrupt hydrophobic to hydrophilic dynamic water contact angle transition. After an induction time, ti ≈ 40 to 180 s, water contact angle varied as θc ≈ 116° to 40° with an ultrafast contact angle decay time constant, [Formula: see text] ≈ -18°/s. This behavior is a result of competing heterogeneous and antagonistic effects of bumpy poly(DMA) wetting domains against a nonwetting planar poly(FOSM) background, with a "jump percolation" wetting transition when the poly(DMA) domain density reaches unity. Outside of this film thickness range, relatively shallow decreasing water contact angle gradients were observed with a monotonically increasing poly(DMA) domain area coverage with increasing film thickness in the overall range of 40 nm (hydrophobic, θc ≈ 118°) < h < 500 nm (hydrophilic, θc ≈ 8°). The optical diffuse reflectance properties of these rough surfaces exhibit an onset of diffuse reflectance maxima correlated to the transition morphology film thickness.

7.
ACS Appl Mater Interfaces ; 9(32): 27239-27249, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28741361

RESUMEN

Three-dimensional printing enables the net shape manufacturing of objects with minimal material waste and low tooling costs, but the functionality is generally limited by available materials, especially for extrusion-based printing, such as fused deposition modeling (FDM). Here, we demonstrate shape memory behavior of 3D printed objects with FDM using a commercially available olefin ionomer, Surlyn 9520, which is zinc-neutralized poly(ethylene-co-methacrylic acid). The initial fixity for 3D printed and compression-molded samples was similar, but the initial recovery was much lower for the 3D printed sample (R = 58%) than that for the compression-molded sample (R = 83%). The poor recovery in the first cycle is attributed to polyethylene crystals formed during programming that act to resist the permanent network recovery. This effect is magnified in the 3D printed part due to the higher strain (lower modulus in the 3D printed part) at a fixed programming stress. The fixity and recovery in subsequent shape memory cycles are greater for the 3D printed part than for the compression-molded part. Moreover, the programmed strain can be systematically modulated by inclusion of porosity in the printed part without adversely impacting the fixity or recovery. These characteristics enable the direct formation of complex shapes of thermoplastic shape memory polymers that can be recovered in three dimensions with the appropriate trigger, such as heat, through the use of FDM as a 3D printing technology.

8.
ACS Appl Mater Interfaces ; 9(6): 5348-5357, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28116895

RESUMEN

In this paper, we report the highly efficient bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device structure via utilizing an ultrathin layer of lithium sulfonated polystyrene (LiSPS) ionomer to reengineer the surface of the solution-processed zinc oxide (ZnO) electron extraction layer (EEL). The unique lithium-ionic conductive LiSPS contributes to enhanced electrical conductivity of the ZnO/LiSPS EEL, which not only facilitates charge extraction from the BHJ active layer but also minimizes the energy loss within the charge transport processes. In addition, the organic-inorganic LiSPS ionomer well circumvents the coherence issue of the organic BHJ photoactive layer on the ZnO EEL. Consequently, the enhanced charge transport and the lowered internal resistance between the BHJ photoactive layer and the ZnO/LiSPS EEL give rise to a dramatically reduced dark saturation current density and significantly minimized charge carrier recombination. As a result, the inverted BHJ PSCs with the ZnO/LiSPS EEL exhibit an approximatively 25% increase in power conversion efficiency. These results indicate our strategy provides an easy, but effective, approach to reach high performance inverted PSCs.

9.
Br J Hosp Med (Lond) ; 77(10): 565-568, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27723397

RESUMEN

Virus infections are an important factor in the global burden of human cancer. The discovery and mode of action of human tumour viruses is briefly reviewed together with the promise of prevention through vaccination.


Asunto(s)
Neoplasias/virología , Virus Oncogénicos , Infecciones Tumorales por Virus/prevención & control , Vacunas Virales/uso terapéutico , Adenocarcinoma/prevención & control , Adenocarcinoma/virología , Carcinoma/prevención & control , Carcinoma/virología , Carcinoma Hepatocelular/prevención & control , Carcinoma Hepatocelular/virología , Epidermodisplasia Verruciforme/prevención & control , Infecciones por Virus de Epstein-Barr/prevención & control , Femenino , Hepacivirus , Virus de la Hepatitis B , Herpesvirus Humano 4 , Humanos , Leiomiosarcoma/prevención & control , Leiomiosarcoma/virología , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/virología , Linfoma/prevención & control , Linfoma/virología , Masculino , Neoplasias Nasofaríngeas/prevención & control , Neoplasias Nasofaríngeas/virología , Neoplasias/prevención & control , Papillomaviridae , Infecciones por Papillomavirus/prevención & control , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/virología , Neoplasias Gástricas/prevención & control , Neoplasias Gástricas/virología , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/virología , Neoplasias de la Vulva/prevención & control , Neoplasias de la Vulva/virología
10.
Macromol Rapid Commun ; 37(23): 1932-1938, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27723158

RESUMEN

Surface memory effects for micropattern and nanopattern are demonstrated for shape memory compounds composed of mixtures of the zinc salt of a sulfonated poly(ethylene-co-propylene-co-ethylidene norbornene) ionomer and three different low molar mass fatty acids (FAs): lauric acid (LA), stearic acid (SA), and zinc stearate (ZnSt). This work shows the ability to tune the surface pattern switching temperature (Tc ) by simply varying the FA melting point. The melting point of the FA in the ionomer compound is depressed from that of the pure FA due to strong dipolar interactions between the ionomer and the FAs. Surface pattern memory and recovery are shown for compounds with 20 wt% LA, SA, or ZnSt, where Tc = 50, 80, and 100 °C, respectively. Recovery efficiencies for micropatterns are better than 92% for all three compounds and 73% for a nanopattern for the ionomer/ZnSt compound.


Asunto(s)
Ácidos Grasos/química , Impresión Molecular , Polímeros/química , Sustancias Macromoleculares/química , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
11.
ACS Appl Mater Interfaces ; 8(35): 22774-9, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27548013

RESUMEN

Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content.

12.
J Phys Chem B ; 120(24): 5543-52, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27228304

RESUMEN

Prevention of ice crystallization is a challenging problem with implications in diverse applications, as well as examining the fundamental low temperature physics of water. Here, we demonstrate a simple route, inspired by water confinement in antifreeze proteins, to inhibit crystallization and provide high water mobility of highly supercooled water using supramolecular hydrogels of copolymers of dimethylacrylamide (DMA) and 2-(N-ethylperfluorooctane sulfonamido)ethyl acrylate (FOSA). These hydrogels can suppress or inhibit freezing of their water, depending on the copolymer composition. Dynamic and static neutron scattering indicate that hydrogels using the copolymer with 22 mol % FOSA partially inhibit ice formation. This behavior is attributed to confinement (<2 nm) of water between the hydrophobic FOSA nanodomains that prevents 45% of the water within the hydrogel from freezing even at 205 K. Very fast dynamics of the amorphous water are observed at 220 K with an effective local diffusivity decreased by only a factor of 2 from that observed at 295 K within the hydrogel using the copolymer with 22 mol % FOSA. The spacing between the hydrophobic nanodomains, tuned through the copolymer composition, appears to modulate the water that can crystallize. These fully hydrated hydrogels (at equilibrium with liquid water at 295 K) can enable a significant fraction of highly supercooled water to be stable down to at least 205 K.

13.
Langmuir ; 31(45): 12472-80, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26492220

RESUMEN

Fluorinated polymers in emulsion find enormous applications in hydrophobic surface coating. Currently, lots of efforts are being made to develop specialty polymer emulsions which are free from surfactants. This investigation reports the preparation of a fluorinated copolymer via Pickering miniemulsion polymerization. In this case, 2,2,3,3,3-pentafluoropropyl acrylate (PFPA), methyl methacrylate (MMA), and n-butyl acrylate (nBA) were copolymerized in miniemulsion using Laponite-RDS as the stabilizer. The copolymerization was carried out via reversible addition-fragmentation chain transfer (RAFT) process. Here, a cationic RAFT agent, S-1-dodecyl-S'-(methylbenzyltriethylammonium bromide) trithiocarbonate (DMTTC), was used to promote polymer-Laponite interaction by means of ionic attraction. The polymerization was much faster when Laponite content was 30 wt % or above with 1.2 wt % RAFT agent. The stability of the miniemulsion in terms of zeta potential was found to be dependent on the amount of both Laponite and RAFT agent. The miniemulsion had particle sizes in the range of 200-300 nm. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses showed the formation of Laponite armored spherical copolymer particles. The fluorinated copolymer films had improved surface properties because of polymer-Laponite interaction.

14.
J Biomed Mater Res A ; 103(2): 500-10, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24733780

RESUMEN

End-capping by covalently binding functional groups to the ends of polymer chains offers potential advantages for tissue engineering scaffolds, but the ability of such polymers to influence cell behavior has not been studied. As a demonstration, polylactide (PLA) was end-capped with lithium carboxylate ionic groups (hPLA13kLi) and evaluated. Thin films of the hPLA13kLi and PLA homopolymer were prepared with and without surface texturing. Murine osteoblast progenitor cells from collagen 1α1 transgenic reporter mice were used to assess cell attachment, proliferation, differentiation, and mineralization. Measurement of green fluorescent protein expressed by these cells and xylenol orange staining for mineral allowed quantitative analysis. The hPLA13kLi was biologically active, increasing initial cell attachment and enhancing differentiation, while reducing proliferation and strongly suppressing mineralization, relative to PLA. These effects of bound lithium ions (Li(+) ) had not been previously reported, and were generally consistent with the literature on soluble additions of lithium. The surface texturing generated here did not influence cell behavior. These results demonstrate that end-capping could be a useful approach in scaffold design, where a wide range of biologically active groups could be employed, while likely retaining the desirable characteristics associated with the unaltered homopolymer backbone.


Asunto(s)
Calcificación Fisiológica , Diferenciación Celular , Litio/química , Membranas Artificiales , Osteoblastos/metabolismo , Poliésteres/química , Células Madre/metabolismo , Animales , Ratones , Ratones Transgénicos , Osteoblastos/citología , Células Madre/citología
15.
Soft Matter ; 10(35): 6705-12, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25066190

RESUMEN

The thin film behavior of poly(N-isopropylacrylamide-stat-2-(N-ethylperfluorooctane sulfonamido)ethyl acrylate) (NIPAAm-stat-FOSA) based hydrogels containing 5 mol% FOSA was elucidated using quartz crystal microbalance with dissipation (QCM-D) in combination with spectroscopic ellipsometry (SE) through examination of the lower critical solution temperature (LCST) and temperature dependent swelling for (dry) thicknesses ranging from 10 nm to 121 nm. For all thin films measured, the LCST was shown to slightly increase (>3 °C) in comparison to that of the bulk sample. However for these films, the increase in LCST was statistically identical, irrespective of thickness. Surprisingly, the volumetric swelling of the hydrogel in thin films, even at temperatures less than the LCST, was similar (within 20%) to the volumetric swelling of the bulk hydrogel, despite the expected significant decrease associated with the hydrogel being constrained by the substrate as predicted by one dimensional Flory-Rehner theory. We attribute this enhancement in swelling compared to theoretical expectations to the ability of the hydrophobic crosslinks to re-arrange under stress, which provides a mechanism to alleviate the decreased dimensionality imposed by the substrate; this mechanism is consistent with a large hysteresis in the swelling when cycling between 35 °C and 5 °C. Unlike the LCST, the swelling ratio increases with decreasing film thickness. At low temperatures (below the LCST), the volume swelling ratio increased from 3.9 to 4.9, while at temperatures above the LCST the swelling ratio increased from 1.5 to 2.5 when the film thickness decreased from 121 nm to 10 nm. The combination of facile processing through solution casting without the need for additional crosslinking chemistry and limited thickness dependent variation of swelling and LCST behavior in these physically crosslinked hydrogels makes these materials attractive for applications requiring thermoresponsive soft coatings.

16.
J Intern Med ; 275(5): 444-55, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24581142

RESUMEN

Despite the great advances made in controlling human immunodeficiency virus type 1 (HIV-1) infection with antiretroviral drug treatment, a safe and efficacious HIV vaccine has yet to be developed. Here, we discuss why clinical trials and vaccine development for HIV have so far been disappointing, with an emphasis on the lack of protective antibodies. We review approaches for developing appropriate HIV immunogens and the stimulation of long-lasting B-cell responses with antibody maturation. We conclude that candidate reagents in the pipeline for HIV vaccine development are unlikely to be particularly effective. Although the major funders of HIV vaccine research and development are placing increasing emphasis on clinical product development, a genuine breakthrough in preventing HIV infection through vaccines is more likely to come from novel immunogen research.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Adyuvantes Inmunológicos , Animales , Linfocitos B/inmunología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Epítopos de Linfocito B/inmunología , Predicción , Infecciones por VIH/prevención & control , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunidad Mucosa/inmunología , Tecnología Farmacéutica/tendencias , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/inmunología
17.
ACS Macro Lett ; 3(4): 374-377, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35590749

RESUMEN

A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Commercial rubber bands were swollen in molten stearic acid at 75 °C (35 wt % stearic acid loading). When cooled the crystallization of the stearic acid formed a percolated network of crystalline platelets. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acid and fixation below that point. Under manual, strain-controlled, tensile deformation the shape memory rubber bands exhibited fixity and recovery of 100% ± 10%.

18.
ACS Macro Lett ; 2(1): 86-89, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35581830

RESUMEN

The shape memory behavior of a series of strong, tough hybrid hydrogels prepared by covalently cross-linking quad-polymers of N,N-dimethylacrylamide (DMA), 2-(N-ethylperfluoro-octanesulfonamido) ethyl methacrylate (FOSM), hydroxyethyl acrylate, and 2-cinnamoyloxyethyl acrylate was investigated. The hybrid hydrogels, which had physical and covalent cross-links, contained ∼60-70% water, were relatively soft and elastic, and exhibited high mechanical strength, extensibility, and fracture toughness. The temporary network was derived from glassy nanodomains due to microphase separation of the FOSM species. The switching temperature for shape memory was the glass transition temperature of the nanodomains. Some creep relaxation occurred in the fixed shape due to viscoelastic effects of the nanodomain cross-links, but shape fixing efficiencies of 84-88% were achieved for the fixed shape after 24 h at 10 °C. Shape recovery to the permanent shape was achieved by reheating the hydrogel to 65 °C and was essentially quantitative.

19.
ACS Macro Lett ; 2(3): 217-221, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35581885

RESUMEN

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) was used to quantify the sulfonation level and sulfonation distribution of sulfonated polystyrene ionomers prepared by homogeneous solution sulfonation. The sulfonation levels obtained by MALDI-ToF MS and acid-base titration were compared, and the sulfonate distributions determined by MALDI-ToF MS were compared with theoretical random distributions. The results indicate that the sulfonation reaction used produces a sample with a random sulfonate distribution.

20.
ACS Macro Lett ; 1(8): 1071-1073, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23205321

RESUMEN

The synthesis of a 4-dibenzocyclooctynol (DIBO) functionalized polyethylene glycol (PEG) and fabrication of hydrogels via strain-promoted, metal-free, azide-alkyne cycloaddition is reported. The resulting hydrogel materials provide a versatile alternative in which to encapsulate cells that are sensitive to photochemical or chemical crosslinking mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...