Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 432(16): 4762-4771, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32592697

RESUMEN

Reverse gyrase is a unique type I topoisomerase that catalyzes the introduction of positive supercoils into DNA in an ATP-dependent reaction. Supercoiling is the result of a functional cooperation of the N-terminal helicase domain with the C-terminal topoisomerase domain. The helicase domain is a nucleotide-dependent conformational switch that alternates between open and closed states with different affinities for single- and double-stranded DNA. The isolated helicase domain as well as full-length reverse gyrase can transiently unwind double-stranded regions in an ATP-dependent reaction. The latch region of reverse gyrase, an insertion into the helicase domain with little conservation in sequence and length, has been proposed to coordinate events in the helicase domain with strand passage by the topoisomerase domain. Latch deletions lead to a reduction in or complete loss of supercoiling activity. Here we show that the latch consists of two functional parts, a globular domain that is dispensable for DNA supercoiling and a ß-hairpin that connects the globular domain to the helicase domain and is required for supercoiling activity. The ß-hairpin thus constitutes a minimal latch that couples ATP-dependent processes in the helicase domain to DNA processing by the topoisomerase domain.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/metabolismo , Thermotoga maritima/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN-Topoisomerasas de Tipo I/genética , ADN Bacteriano/metabolismo , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Eliminación de Secuencia , Thermotoga maritima/química , Thermotoga maritima/genética
2.
Plant Sci ; 265: 100-111, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29223331

RESUMEN

The exponential increase of genomes' sequencing has revealed the presence of NO-Synthases (NOS) throughout the tree of life, uncovering an extraordinary diversity of genetic structure and biological functions. Although NO has been shown to be a crucial mediator in plant physiology, NOS sequences seem present solely in green algae genomes, with a first identification in the picoplankton species Ostreococcus tauri. There is no rationale so far to account for the presence of NOS in this early-diverging branch of the green lineage and its absence in land plants. To address the biological function of algae NOS, we cloned, expressed and characterized the NOS oxygenase domain from Ostreococcus tauri (OtNOSoxy). We launched a phylogenetic and structural analysis of algae NOS, and achieved a 3D model of OtNOSoxy by homology modeling. We used a combination of various spectroscopies to characterize the structural and electronic fingerprints of some OtNOSoxy reaction intermediates. The analysis of OtNOSoxy catalytic activity and kinetic efficiency was achieved by stoichiometric stopped-flow. Our results highlight the conserved and particular features of OtNOSoxy structure that might explain its ultrafast NO-producing capacity. This integrative Structure-Catalysis-Function approach could be extended to the whole NOS superfamily and used for predicting potential biological activity for any new NOS.


Asunto(s)
Proteínas Algáceas/genética , Chlorophyta/genética , Microalgas/genética , Óxido Nítrico Sintasa/genética , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Chlorophyta/metabolismo , Microalgas/metabolismo , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Filogenia , Alineación de Secuencia
3.
Biochemistry ; 56(5): 748-756, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28074650

RESUMEN

Nitric oxide is produced in mammals by the nitric oxide synthase (NOS) isoforms at a catalytic site comprising a heme associated with a biopterin cofactor. Through genome sequencing, proteins that are highly homologous to the oxygenase domain of NOSs have been identified, in particular in bacteria. The active site is highly conserved except for a valine residue in the distal pocket that is replaced with an isoleucine in bacteria. This switch was previously reported to influence the kinetics of the reaction. We have used the V346I mutant of the mouse inducible NOS (iNOS) as well as the I224V mutant of the NOS from Bacillus subtilis (bsNOS) to study their spectroscopic signatures in solution and look for potential structural differences compared to their respective wild types. Both mutants seem destabilized in the absence of substrate and cofactor. When both substrate and cofactor are present, small differences can be detected with Nω-hydroxy-l-arginine compared to arginine, which is likely due to the differences in the hydrogen bonding network of the distal pocket. Stopped-flow experiments evidence significant changes in the kinetics of the reaction due to the mutation as was already known. We found these effects particularly marked for iNOS. On the basis of these results, we performed rapid freeze-quench experiments to trap the biopterin radical and found the same results that we had obtained for the wild types. Despite differences in kinetics, a radical could be trapped in both steps for the iNOS mutant but only for the first step in the mutant of bsNOS. This strengthens the hypothesis that mammalian and bacterial NOSs may have a different mechanism during the second catalytic step.


Asunto(s)
Proteínas Bacterianas/química , Isoleucina/química , Mutación , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa/química , Valina/química , Sustitución de Aminoácidos , Animales , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Biopterinas/química , Biopterinas/metabolismo , Dominio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Secuencia Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Enlace de Hidrógeno , Isoleucina/metabolismo , Cinética , Ratones , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Valina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...