Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 614(7949): 732-741, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792830

RESUMEN

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.


Asunto(s)
Encéfalo , Reparación del ADN , Complejos Multiproteicos , Neuronas , Sinapsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Encéfalo/metabolismo , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Lisina Acetiltransferasa 5/metabolismo , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Mutación , Longevidad/genética , Genoma , Envejecimiento/genética , Enfermedades Neurodegenerativas
2.
Nat Commun ; 13(1): 2380, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501346

RESUMEN

Thyroid hormones are essential regulators of metabolism, development, and growth. They are formed from pairs of iodinated tyrosine residues within the precursor thyroglobulin (TG), a 660-kDa homodimer of the thyroid gland, by an oxidative coupling reaction. Tyrosine pairs that give rise to thyroid hormones have been assigned within the structure of human TG, but the process of hormone formation is poorly understood. Here we report a ~3.3-Å cryo-EM structure of native bovine TG with nascent thyroid hormone formed at one of the predicted hormonogenic sites. Local structural rearrangements provide insight into mechanisms underlying thyroid hormone formation and stabilization.


Asunto(s)
Tiroglobulina , Hormonas Tiroideas , Animales , Bovinos , Microscopía por Crioelectrón , Humanos , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Tirosina/metabolismo
3.
Mol Cell ; 67(5): 770-782.e6, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886335

RESUMEN

The mammalian circadian clock is built on a feedback loop in which PER and CRY proteins repress their own transcription. We found that in mouse liver nuclei all three PERs, both CRYs, and Casein Kinase-1δ (CK1δ) are present together in an ∼1.9-MDa repressor assembly that quantitatively incorporates its CLOCK-BMAL1 transcription factor target. Prior to incorporation, CLOCK-BMAL1 exists in an ∼750-kDa complex. Single-particle electron microscopy (EM) revealed nuclear PER complexes purified from mouse liver to be quasi-spherical ∼40-nm structures. In the cytoplasm, PERs, CRYs, and CK1δ were distributed into several complexes of ∼0.9-1.1 MDa that appear to constitute an assembly pathway regulated by GAPVD1, a cytoplasmic trafficking factor. Single-particle EM of two purified cytoplasmic PER complexes revealed ∼20-nm and ∼25-nm structures, respectively, characterized by flexibly tethered globular domains. Our results define the macromolecular assemblies comprising the circadian feedback loop and provide an initial structural view of endogenous eukaryotic clock machinery.


Asunto(s)
Núcleo Celular/metabolismo , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Quinasa Idelta de la Caseína/metabolismo , Línea Celular , Núcleo Celular/ultraestructura , Péptidos y Proteínas de Señalización del Ritmo Circadiano/deficiencia , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Femenino , Genotipo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Complejos Multiproteicos , Tamaño de la Partícula , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenotipo , Interferencia de ARN , Transducción de Señal , Imagen Individual de Molécula , Factores de Tiempo , Transfección
4.
Nat Struct Mol Biol ; 22(10): 759-66, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26323038

RESUMEN

Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock-Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock-Bmal1 activity. We found that mouse Clock-Bmal1 recruits the Ddb1-Cullin-4 ubiquitin ligase to Per (Per1 and Per2), Cry (Cry1 and Cry2) and other circadian target genes. Histone H2B monoubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1 and Cullin-4a. Depletion of Ddb1-Cullin-4a or an independent decrease in H2B monoubiquitination caused defective circadian feedback and decreased the association of the Per complex with DNA-bound Clock-Bmal1. Clock-Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback.


Asunto(s)
Ritmo Circadiano/fisiología , Retroalimentación Fisiológica/fisiología , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Inmunoprecipitación de Cromatina , Cromatografía Liquida , Ritmo Circadiano/genética , Proteínas Cullin/metabolismo , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem , Ubiquitinación
5.
Mol Biol Cell ; 26(22): 3940-5, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26269583

RESUMEN

Tracking molecular dynamics in single cells in vivo is instrumental to understanding how cells act and interact in tissues. Current tissue imaging approaches focus on short-term observation and typically nonendogenous or implanted samples. Here we develop an experimental and computational setup that allows for single-cell tracking of a transcriptional reporter over a period of >1 wk in the context of an intact tissue. We focus on the peripheral circadian clock as a model system and measure the circadian signaling of hundreds of cells from two tissues. The circadian clock is an autonomous oscillator whose behavior is well described in isolated cells, but in situ analysis of circadian signaling in single cells of peripheral tissues is as-yet uncharacterized. Our approach allowed us to investigate the oscillatory properties of individual clocks, determine how these properties are maintained among different cells, and assess how they compare to the population rhythm. These experiments, using a wide-field microscope, a previously generated reporter mouse, and custom software to track cells over days, suggest how many signaling pathways might be quantitatively characterized in explant models.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas Circadianas Period/metabolismo , Análisis de la Célula Individual/métodos , Animales , Huesos/citología , Huesos/fisiología , Relojes Circadianos , Ratones , Ratones Transgénicos , Modelos Animales , Proteínas Nucleares/metabolismo , Células Vegetales/fisiología , Programas Informáticos , Tendones/citología , Tendones/fisiología , Factores de Transcripción/metabolismo
6.
Methods Enzymol ; 551: 197-210, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662458

RESUMEN

In mammals, circadian rhythms are generated at least in part by a cell-autonomous transcriptional feedback loop in which the three PERIOD (PER) and two CRYPTOCHROME (CRY) proteins inhibit the activity of the dimeric transcription factor CLOCK-BMAL1, thereby repressing their own expression. Upon nuclear entry, the PER and CRY proteins form a large protein complex (PER complex) that carries out circadian negative feedback by means of at least two basic functions: (1) it brings together multiple effector proteins that repress transcription and (2) it delivers these repressive effectors directly to CLOCK-BMAL1 bound to E-box sequences of circadian target genes. At present, the composition, mechanisms of action, and dynamics of PER complexes in circadian clock negative feedback are incompletely understood. Here, we describe several experimental approaches to the study of PER complexes obtained from mammalian tissues. We focus on the isolation of nuclei from mouse tissues, the extraction of PER complexes from the isolated nuclei, characterization of native PER complexes by gel filtration and blue native polyacrylamide gel electrophoresis, preparative immunoaffinity purification of PER complexes for mass spectrometric identification of constituent proteins, and chromatin immunoprecipitation to monitor the recruitment of PER complex proteins to CLOCK-BMAL1 at E-box sites of clock-regulated genes.


Asunto(s)
Complejos Multiproteicos/aislamiento & purificación , Proteínas Circadianas Period/aislamiento & purificación , Animales , Inmunoprecipitación de Cromatina , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Humanos
7.
Mol Cell ; 56(6): 738-48, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25453762

RESUMEN

Mammalian circadian rhythms are generated by a negative feedback loop in which PERIOD (PER) proteins accumulate, form a large nuclear complex (PER complex), and bind the transcription factor CLOCK-BMAL1, repressing their own expression. We found that mouse PER complexes include the Mi-2/nucleosome remodelling and deacetylase (NuRD) transcriptional corepressor. Unexpectedly, two NuRD subunits, CHD4 and MTA2, constitutively associate with CLOCK-BMAL1, with CHD4 functioning to promote CLOCK-BMAL1 transcriptional activity. At the onset of negative feedback, the PER complex delivers the remaining complementary NuRD subunits to DNA-bound CLOCK-BMAL1, thereby reconstituting a NuRD corepressor that is important for circadian transcriptional feedback and clock function. The PER complex thus acquires full repressor activity only upon successful targeting of CLOCK-BMAL1. Our results show how specificity is generated in the clock despite its dependence on generic transcriptional regulators and reveal the existence of active communication between the positive and negative limbs of the circadian feedback loop.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Animales , Relojes Circadianos , Retroalimentación Fisiológica , Hígado/metabolismo , Ratones Noqueados , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/fisiología
8.
Nat Struct Mol Biol ; 21(2): 126-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413057

RESUMEN

The mammalian circadian clock is built on a molecular feedback loop in which the Period (PER) proteins, acting in a large, poorly understood complex, repress Clock-Bmal1, the transcription factor driving their expression. We found that mouse PER complexes include the histone methyltransferase HP1γ-Suv39h. PER proteins recruited HP1γ-Suv39h to the Per1 and Per2 promoters, and HP1γ-Suv39h proved important for circadian di- and trimethylation of histone H3 Lys9 (H3K9) at the Per1 promoter, feedback repression and clock function. HP1γ-Suv39h was recruited to the Per1 and Per2 promoters ~4 h after recruitment of HDAC1, a PER-associated protein previously implicated in clock function and H3K9 deacetylation at the Per1 promoter. PER complexes containing HDAC1 or HP1γ-Suv39h appeared to be physically separable. Circadian clock negative feedback by the PER complex thus involves dynamic, ordered recruitment of repressive chromatin modifiers to DNA-bound Clock-Bmal1.


Asunto(s)
Ensamble y Desensamble de Cromatina , Relojes Circadianos/genética , Proteínas Circadianas Period/fisiología , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Metilación , Metiltransferasas/metabolismo , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Represoras/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(40): 16021-6, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043798

RESUMEN

Circadian clocks in mammals are built on a negative feedback loop in which the heterodimeric transcription factor circadian locomotor output cycles kaput (CLOCK)-brain, muscle Arnt-like 1 (BMAL1) drives the expression of its own inhibitors, the PERIOD and CRYPTOCHROME proteins. Reactivation of CLOCK-BMAL1 occurs at a specific time several hours after PERIOD and CRYPTOCHROME protein turnover, but the mechanism underlying this process is unknown. We found that mouse BMAL1 complexes include TRAP150 (thyroid hormone receptor-associated protein-150; also known as THRAP3). TRAP150 is a selective coactivator for CLOCK-BMAL1, which oscillates under CLOCK-BMAL1 transcriptional control. TRAP150 promotes CLOCK-BMAL1 binding to target genes and links CLOCK-BMAL1 to the transcriptional machinery at target-gene promoters. Depletion of TRAP150 caused low-amplitude, long-period rhythms, identifying it as a positive clock element. The activity of TRAP150 defines a positive feedback loop within the clock and provides a potential mechanism for timing the reactivation of circadian transcription.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Unión al ADN/metabolismo , Retroalimentación Fisiológica/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Humanos , Immunoblotting , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , Factores de Transcripción/genética
10.
Science ; 337(6094): 599-602, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22767893

RESUMEN

Eukaryotic circadian clocks are built on transcriptional feedback loops. In mammals, the PERIOD (PER) and CRYPTOCHROME (CRY) proteins accumulate, form a large nuclear complex (PER complex), and repress their own transcription. We found that mouse PER complexes included RNA helicases DDX5 and DHX9, active RNA polymerase II large subunit, Per and Cry pre-mRNAs, and SETX, a helicase that promotes transcriptional termination. During circadian negative feedback, RNA polymerase II accumulated near termination sites on Per and Cry genes but not on control genes. Recruitment of PER complexes to the elongating polymerase at Per and Cry termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. Circadian clock negative feedback thus includes direct control of transcriptional termination.


Asunto(s)
Relojes Circadianos/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Transcripción Genética , Animales , Criptocromos/genética , Criptocromos/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
11.
Science ; 332(6036): 1436-9, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21680841

RESUMEN

Circadian rhythms in mammals are generated by a feedback loop in which the three PERIOD (PER) proteins, acting in a large complex, inhibit the transcriptional activity of the CLOCK-BMAL1 dimer, which represses their own expression. Although fundamental, the mechanism of negative feedback in the mammalian clock, or any eukaryotic clock, is unknown. We analyzed protein constituents of PER complexes purified from mouse tissues and identified PSF (polypyrimidine tract-binding protein-associated splicing factor). Our analysis indicates that PSF within the PER complex recruits SIN3A, a scaffold for assembly of transcriptional inhibitory complexes and that the PER complex thereby rhythmically delivers histone deacetylases to the Per1 promoter, which repress Per1 transcription. These findings provide a function for the PER complex and a molecular mechanism for circadian clock negative feedback.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Retroalimentación Fisiológica , Proteínas Circadianas Period/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Espectrometría de Masas , Ratones , Factor de Empalme Asociado a PTB , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Transcripción Genética
12.
Science ; 327(5964): 463-6, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20093473

RESUMEN

At the core of the mammalian circadian clock is a negative feedback loop in which the dimeric transcription factor CLOCK-BMAL1 drives processes that in turn suppress its transcriptional activity. To gain insight into the mechanisms of circadian feedback, we analyzed mouse protein complexes containing BMAL1. Receptor for activated C kinase-1 (RACK1) and protein kinase C-alpha (PKCalpha) were recruited in a circadian manner into a nuclear BMAL1 complex during the negative feedback phase of the cycle. Overexpression of RACK1 and PKCalpha suppressed CLOCK-BMAL1 transcriptional activity, and RACK1 stimulated phosphorylation of BMAL1 by PKCalpha in vitro. Depletion of endogenous RACK1 or PKCalpha from fibroblasts shortened the circadian period, demonstrating that both molecules function in the clock oscillatory mechanism. Thus, the classical PKC signaling pathway is not limited to relaying external stimuli but is rhythmically activated by internal processes, forming an integral part of the circadian feedback loop.


Asunto(s)
Ritmo Circadiano/fisiología , Neuropéptidos/metabolismo , Proteína Quinasa C-alfa/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Núcleo Celular/metabolismo , Retroalimentación Fisiológica , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/genética , Fosforilación , Unión Proteica , Interferencia de ARN , Receptores de Cinasa C Activada , Transducción de Señal , Transcripción Genética
13.
Proc Natl Acad Sci U S A ; 106(16): 6808-13, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19366674

RESUMEN

When food availability is restricted to a particular time each day, mammals exhibit food-anticipatory activity (FAA), a daily increase in locomotor activity preceding the presentation of food. Considerable historical evidence suggests that FAA is driven by a food-entrainable circadian clock distinct from the master clock of the suprachiasmatic nucleus. Multiple food-entrainable circadian clocks have been discovered in the brain and periphery, raising strong expectations that one or more underlie FAA. We report here that mutant mice lacking known circadian clock function in all tissues exhibit normal FAA both in a light-dark cycle and in constant darkness, regardless of whether the mutation disables the positive or negative limb of the clock feedback mechanism. FAA is thus independent of the known circadian clock. Our results indicate either that FAA is not the output of an oscillator or that it is the output of a circadian oscillator different from known circadian clocks.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Factores de Transcripción ARNTL , Ciclos de Actividad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Oscuridad , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Mutación/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(39): 15172-7, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18779586

RESUMEN

Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Ritmo Circadiano/fisiología , Glucosa/metabolismo , Hígado/fisiología , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Homeostasis/genética , Hígado/metabolismo , Ratones , Ratones Mutantes
15.
Cell ; 130(4): 730-741, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17719549

RESUMEN

Circadian clocks are widely distributed in mammalian tissues, but little is known about the physiological functions of clocks outside the suprachiasmatic nucleus of the brain. The retina has an intrinsic circadian clock, but its importance for vision is unknown. Here we show that mice lacking Bmal1, a gene required for clock function, had abnormal retinal transcriptional responses to light and defective inner retinal electrical responses to light, but normal photoreceptor responses to light and retinas that appeared structurally normal by light and electron microscopy. We generated mice with a retina-specific genetic deletion of Bmal1, and they had defects of retinal visual physiology essentially identical to those of mice lacking Bmal1 in all tissues and lacked a circadian rhythm of inner retinal electrical responses to light. Our findings indicate that the intrinsic circadian clock of the retina regulates retinal visual processing in vivo.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Retina/fisiología , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Electrorretinografía , Eliminación de Gen , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Retina/citología , Retina/ultraestructura
16.
Nat Cell Biol ; 9(3): 268-75, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17310242

RESUMEN

At the core of the mammalian circadian clock is a feedback loop in which the heterodimeric transcription factor CLOCK-Brain, Muscle Arnt-like-1 (BMAL1) drives expression of its negative regulators, periods (PERs) and cryptochromes (CRYs). Here, we provide evidence that CLOCK-Interacting Protein, Circadian (CIPC) is an additional negative-feedback regulator of the circadian clock. CIPC exhibits circadian regulation in multiple tissues, and it is a potent and specific inhibitor of CLOCK-BMAL1 activity that functions independently of CRYs. CIPC-CLOCK protein complexes are present in vivo, and depletion of endogenous CIPC shortens the circadian period length. CIPC is unrelated to known proteins and has no recognizable homologues outside vertebrates. Our results suggest that negative feedback in the mammalian circadian clock is divided into distinct pathways, and that the addition of new genes has contributed to the complexity of vertebrate clocks.


Asunto(s)
Relojes Biológicos/fisiología , Proteínas Portadoras/metabolismo , Ritmo Circadiano/fisiología , Transactivadores/metabolismo , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Criptocromos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulación de la Expresión Génica , Inmunoprecipitación , Riñón/metabolismo , Hígado/metabolismo , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Miocardio/metabolismo , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Circadianas Period , Unión Proteica , ARN sin Sentido/genética , Transactivadores/genética , Activación Transcripcional/genética , Transfección , Técnicas del Sistema de Dos Híbridos
17.
Neuron ; 52(2): 255-69, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17046689

RESUMEN

Mutations or duplications in MECP2 cause Rett and Rett-like syndromes, neurodevelopmental disorders characterized by mental retardation, motor dysfunction, and autistic behaviors. MeCP2 is expressed in many mammalian tissues and functions as a global repressor of transcription; however, the molecular mechanisms by which MeCP2 dysfunction leads to the neural-specific phenotypes of RTT remain poorly understood. Here, we show that neuronal activity and subsequent calcium influx trigger the de novo phosphorylation of MeCP2 at serine 421 (S421) by a CaMKII-dependent mechanism. MeCP2 S421 phosphorylation is induced selectively in the brain in response to physiological stimuli. Significantly, we find that S421 phosphorylation controls the ability of MeCP2 to regulate dendritic patterning, spine morphogenesis, and the activity-dependent induction of Bdnf transcription. These findings suggest that, by triggering MeCP2 phosphorylation, neuronal activity regulates a program of gene expression that mediates nervous system maturation and that disruption of this process in individuals with mutations in MeCP2 may underlie the neural-specific pathology of RTT.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Espinas Dendríticas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Encéfalo/citología , Factor Neurotrófico Derivado del Encéfalo/genética , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Espinas Dendríticas/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Especificidad de Órganos/fisiología , Fosforilación , Ratas , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología , Serina/metabolismo , Transmisión Sináptica/fisiología
18.
Nat Neurosci ; 9(2): 212-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16429135

RESUMEN

The suprachiasmatic nucleus (SCN) drives circadian rhythms of locomotor behavior by releasing factors that act on receptor sites near the third ventricle. Here we show that cardiotrophin-like cytokine (CLC) satisfies multiple criteria for a circadian regulator of locomotor activity. In the mouse, CLC is expressed in a subpopulation of SCN vasopressin neurons with a circadian rhythm that peaks during the daily period of locomotor quiescence. CLC receptors flank the third ventricle, and acute infusion of CLC into the third ventricle produced a transient blockade of locomotor activity without affecting the circadian clock. The hypothalamic infusion of neutralizing antibodies to the CLC receptor produced extra daily locomotor activity at the time when CLC is maximally expressed. These results suggest that CLC is probably an SCN output signal important for shaping daily rhythms of behavior; moreover, they indicate an unexpected role for a cytokine in adult brain function.


Asunto(s)
Ritmo Circadiano/fisiología , Citocinas/metabolismo , Actividad Motora/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Cricetinae , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
19.
Methods Enzymol ; 393: 645-63, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15817317

RESUMEN

The circadian clock in the suprachiasmatic nucleus (SCN) drives daily locomotor activity rhythms presumably by secreting diffusible factors whose target sites are accessible from the third ventricle of the hypothalamus. This article describes the methodology of a systematic molecular and behavioral screen to identify "locomotor factors" of the SCN. To find SCN-secreted factors not previously documented, a hamster SCN cDNA library was screened in a yeast signal sequence trap. In a subsequent behavioral screen, newly identified and previously documented SCN factors were tested for an effect on locomotor activity rhythms by chronic infusion into the third ventricle of hamsters. Using this approach combined with further experiments, we identified transforming growth factor-alpha (TGF-alpha) as a likely SCN inhibitor of locomotion.


Asunto(s)
Núcleo Supraquiasmático/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Relojes Biológicos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Cricetinae , ADN Complementario/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Técnicas Genéticas , Vectores Genéticos , Inyecciones Intraventriculares , Masculino , Mesocricetus , Actividad Motora/efectos de los fármacos , Biblioteca de Péptidos , Señales de Clasificación de Proteína/genética , Saccharomyces cerevisiae/genética , Factor de Crecimiento Transformador alfa/metabolismo
20.
Appl Bioinformatics ; 3(4): 261-4, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15702958

RESUMEN

UNLABELLED: The analysis of complex patterns of gene regulation is central to understanding the biology of cells, tissues and organisms. Patterns of gene regulation pertaining to specific biological processes can be revealed by a variety of experimental strategies, particularly microarrays and other highly parallel methods, which generate large datasets linking many genes. Although methods for detecting gene expression have improved substantially in recent years, understanding the physiological implications of complex patterns in gene expression data is a major challenge. This article presents GoSurfer, an easy-to-use graphical exploration tool with built-in statistical features that allow a rapid assessment of the biological functions represented in large gene sets. GoSurfer takes one or two list(s) of gene identifiers (Affymetrix probe set ID) as input and retrieves all the Gene Ontology (GO) terms associated with the input genes. GoSurfer visualises these GO terms in a hierarchical tree format. With GoSurfer, users can perform statistical tests to search for the GO terms that are enriched in the annotations of the input genes. These GO terms can be highlighted on the GO tree. Users can manipulate the GO tree in various ways and interactively query the genes associated with any GO term. The user-generated graphics can be saved as graphics files, and all the GO information related to the input genes can be exported as text files. AVAILABILITY: GoSurfer is a Windows-based program freely available for noncommercial use and can be downloaded at http://www.gosurfer.org. Datasets used to construct the trees shown in the figures in this article are available at http://www.gosurfer.org/download/GoSurfer.zip.


Asunto(s)
Gráficos por Computador , Bases de Datos de Proteínas , Perfilación de la Expresión Génica/métodos , Proteoma/metabolismo , Transducción de Señal/fisiología , Programas Informáticos , Interfaz Usuario-Computador , Regulación de la Expresión Génica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...