RESUMEN
The Accelerate Cancer Education (ACE) summer research program at The University of Kansas Cancer Center (KUCC) is a six-week, cancer-focused, summer research experience for high school students from historically marginalized populations in the Kansas City metropolitan area. Cancer affects all populations and continues to be the second leading cause of death in the United States, and a large number of disparities impact racial and ethnic minorities, including increased cancer incidence and mortality. Critically, strategies to bolster diversity, equity, inclusion, and accessibility are needed to address persistent cancer disparities. The ACE program offers an educational opportunity for a population of students who otherwise would not have easy access onto a medical center campus to make connections with cancer physicians and researchers and provides a vital response to the need for a more diverse and expansive oncology workforce. Students grow their technical, social, and professional skills and develop self-efficacy and long-lasting connections that help them matriculate and persist through post-secondary education. Developed in 2018, the ACE program has trained 37 high school junior and senior students. This article describes the need for and how we successfully developed and implemented the ACE program.
RESUMEN
Digital twins are made of a real-world component where data is measured and a virtual component where those measurements are used to parameterize computational models. There is growing interest in applying digital twins-based approaches to optimize personalized treatment plans and improve health outcomes. The integration of artificial intelligence is critical in this process, as it enables the development of sophisticated disease models that can accurately predict patient response to therapeutic interventions. There is a unique and equally important application of AI to the real-world component of a digital twin when it is applied to medical interventions. The patient can only be treated once, and therefore, we must turn to the experience and outcomes of previously treated patients for validation and optimization of the computational predictions. The physical component of a digital twins instead must utilize a compilation of available data from previously treated cancer patients whose characteristics (genetics, tumor type, lifestyle, etc.) closely parallel those of a newly diagnosed cancer patient for the purpose of predicting outcomes, stratifying treatment options, predicting responses to treatment and/or adverse events. These tasks include the development of robust data collection methods, ensuring data availability, creating precise and dependable models, and establishing ethical guidelines for the use and sharing of data. To successfully implement digital twin technology in clinical care, it is crucial to gather data that accurately reflects the variety of diseases and the diversity of the population.
RESUMEN
How the socioeconomic factors intersect for a particular patient can determine their susceptibility to financial toxicity, what costs they will encounter during treatment, the type and quality of their care, and the potential work impairments they face. The primary goal of this study was to evaluate financial factors leading to worsening health outcomes by the cancer subtype. A logistic model predicting worsening health outcomes while assessing the most influential economic factors was constructed by the University of Michigan Health and Retirement Study. A forward stepwise regression procedure was implemented to identify the social risk factors that impact health status. Stepwise regression was done on data subsets based on the cancer types of lung, breast, prostate, and colon cancer to determine whether significant predictors of worsening health status were different or the same across cancer types. Independent covariate analysis was also conducted to cross-validate our model. On the basis of the model fit statistics, the two-factor model has the best fit, that is, the lowest AIC among potential models of 3270.56, percent concordance of 64.7, and a C-statistics of 0.65. The two-factor model used work impairment and out-of-pocket costs, significantly contributing to worsening health outcomes. Covariate analysis demonstrated that younger patients with cancer experienced more financial burdens leading to worsening health outcomes than elderly patients aged 65 years and above. Work impairment and high out-of-pocket costs were significantly associated with worsening health outcomes among cancer patients. Matching the participants who need the most financial help with appropriate resources is essential to mitigate the financial burden. Significance: Among patients with cancer, work impairment and out-of-pocket are the two primary factors contributing to adverse health outcomes. Women, African American or other races, the Hispanic population, and younger individuals have encountered higher work impairment and out-of-pocket costs due to cancer than their counterparts.
Asunto(s)
Neoplasias del Colon , Estrés Financiero , Masculino , Anciano , Humanos , Femenino , Costo de Enfermedad , Atención a la Salud , Estado de SaludRESUMEN
PURPOSE: There is an increasing awareness of the importance of patient engagement in cancer research, but many basic and translational researchers have never been trained to do so. To address this unmet need, a 1-year patient engagement training program for researchers was developed. METHODS: Eleven researchers and eleven paired research advocates participated. This program, designed for virtual delivery, included 3 didactic modules focused on (1) Community Outreach and Engagement principles and methods, (2) Communication skills, and (3) Team Science. This was followed by longitudinal projects to be completed by the researcher/advocate pairs, including learning about the research project, and co-authoring abstracts, manuscripts and grant proposals. Monthly group meetings allowed pairs to share their experiences. The program culminated in the pairs creating and presenting oral abstracts for the University of Kansas Cancer Center's Annual Research Symposium. RESULTS: All participants indicated that the modules had a positive impact on their ability to collaborate in research. Both researcher self-evaluations and patient advocate evaluations of their researcher partner showed an improvement in researcher communication competency. Results from the Patient Engagement in Research Scale showed that advocates were highly engaged. Within 1 year after program completion, participating pairs have completed four abstracts and 9 grant proposals. CONCLUSION: The program will be modified based on participant feedback, and can be adapted for future cohorts if an increased number of sessions per month and shortened program duration are desired. The program's virtual format allows scalability across institutions to potentially benefit large cohorts of researchers.
Asunto(s)
Neoplasias , Investigadores , Humanos , Investigadores/educación , Proyectos de Investigación , Neoplasias/terapia , Relaciones Comunidad-InstituciónRESUMEN
PURPOSE: This study investigated how cancer diagnosis and treatment lead to career disruption and, consequently, loss of income and depletion of savings. DESIGN: This study followed a qualitative descriptive design that allowed us to understand the characteristics and trends of the participants. METHOD: Patients recruited (n = 20) for this study were part of the University of Kansas Cancer Center patient advocacy research group (Patient and Investigator Voices Organizing Together). The inclusion criteria were that participants must be cancer survivors or co-survivors, be aged 18 years or older, be either employed or a student at the time of cancer diagnosis, have completed their cancer treatment, and be in remission. The responses were transcribed and coded inductively to identify themes. A thematic network was constructed based on those themes, allowing us to explore and describe the intricacies of the various themes and their impacts. RESULTS: Most patients had to quit their jobs or take extended absences from work to handle treatment challenges. Patients employed by the same employer for longer durations had the most flexibility to balance their time between cancer treatment and work. Essential, actionable items suggested by the cancer survivors included disseminating information about coping with financial burdens and ensuring that a nurse and financial navigator were assigned to every cancer patient. CONCLUSIONS: Career disruption is common among cancer patients, and the financial burden due to their career trajectory is irreparable. The financial burden is more prominent in younger cancer patients and creates a cascading effect that financially affects close family members.
Asunto(s)
Supervivientes de Cáncer , Neoplasias , Humanos , Renta , Sobrevivientes , Adaptación PsicológicaRESUMEN
Chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC); however, chemoresistance compromises its efficacy. The RNA-binding protein Hu antigen R (HuR) could be a potential therapeutic target to enhance the chemotherapy efficacy. HuR is known to mainly stabilize its target mRNAs, and/or promote the translation of encoded proteins, which are implicated in multiple cancer hallmarks, including chemoresistance. In this study, a docetaxel-resistant cell subline (231-TR) was established from the human TNBC cell line MDA-MB-231. Both the parental and resistant cell lines exhibited similar sensitivity to the small molecule functional inhibitor of HuR, KH-3. Docetaxel and KH-3 combination therapy synergistically inhibited cell proliferation in TNBC cells and tumor growth in three animal models. KH-3 downregulated the expression levels of HuR targets (e.g., ß-Catenin and BCL2) in a time- and dose-dependent manner. Moreover, KH-3 restored docetaxel's effects on activating Caspase-3 and cleaving PARP in 231-TR cells, induced apoptotic cell death, and caused S-phase cell cycle arrest. Together, our findings suggest that HuR is a critical mediator of docetaxel resistance and provide a rationale for combining HuR inhibitors and chemotherapeutic agents to enhance chemotherapy efficacy.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Docetaxel/farmacología , Proteínas de Unión al ARN , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Understanding the contributions of mitochondrial genetics to disease pathogenesis is facilitated by a new and unique model-the mitochondrial-nuclear exchange mouse. Here we report the rationale for their development, the methods used to create them, and a brief summary of how MNX mice have been used to understand the contributions of mitochondrial DNA in multiple diseases, focusing on cancer metastasis. Polymorphisms in mtDNA which distinguish mouse strains exert intrinsic and extrinsic effects on metastasis efficiency by altering epigenetic marks in the nuclear genome, changing production of reactive oxygen species, altering the microbiota, and influencing immune responses to cancer cells. Although the focus of this report is cancer metastasis, MNX mice have proven to be valuable in studying mitochondrial contributions to other diseases as well.
Asunto(s)
Mitocondrias , Neoplasias , Ratones , Animales , Mitocondrias/genética , Mitocondrias/patología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Polimorfismo Genético , Especies Reactivas de Oxígeno/metabolismo , Núcleo Celular/metabolismo , Neoplasias/patologíaRESUMEN
The primary objective of this study was to evaluate the marginal microleakage of Activa Kids BioActive-Restorative used with an adhesive bonding agent (AB+) and compare it with the microleakage of a traditional composite resin (CR), a resin-modified glass ionomer cement (RMGIC), and Activa Kids BioActive-Restorative placed without the use of an adhesive bonding agent (AB-). Standard Class I cavities were prepared in 200 extracted, caries-free permanent molars, which were then restored with 1 of the 4 restorative materials (n = 50 each). The restored teeth were thermocycled for 500 cycles, alternating between 5°C and 55°C with a dwell time of 25 seconds; stained with basic fuchsin dye with a soak time of 24 hours; and sectioned buccolingually. Microleakage was assessed independently by 2 evaluators who viewed specimens under a dissecting microscope at ×30 magnification and assigned scores according to a standardized microleakage scale. Because a Spearman correlation test showed a high correlation between the scores assigned by the 2 evaluators, their ratings for each of the 4 test groups were pooled, and a modified Wilcoxon rank sum test (P < 0.05) was used to analyze the microleakage scores. No difference in microleakage was observed between the AB+ and CR groups (P = 0.8652). Statistically significant differences in microleakage were observed between the AB+ and RMGIC groups (P < 0.0001) as well as between the AB+ and AB- groups (P = 0.0324). The results showed that AB+ had a mean microleakage rate comparable to that of traditional CR. Moreover, AB+ exhibited a lower mean microleakage rate than RMGIC; both the bioactive composite resin and RMGIC are fluoride-releasing materials, so clinicians should consider using AB+, especially in high-caries-risk patients, who are vulnerable to recurrent caries resulting from microleakage and benefit from fluoride release. In this study, AB+ exhibited a significantly lower mean microleakage rate than AB-; therefore, this bioactive material should be used with a bonding agent.
Asunto(s)
Filtración Dental , Restauración Dental Permanente , Humanos , Restauración Dental Permanente/métodos , Fluoruros , Cementos de Resina , Resinas Compuestas/uso terapéutico , Cementos de Ionómero Vítreo/uso terapéutico , Filtración Dental/etiología , Ensayo de Materiales , Preparación de la Cavidad Dental/métodosRESUMEN
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Asunto(s)
Kisspeptinas , Neoplasias , Humanos , Kisspeptinas/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Genes Supresores de Tumor , Metástasis de la NeoplasiaRESUMEN
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Asunto(s)
Genoma Mitocondrial , Neoplasias , Humanos , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Neoplasias/patología , Núcleo Celular/metabolismoRESUMEN
We appear to be faced with 'two truths' in cancer-one of major advances and successes and another one of remaining short-comings and significant challenges. Despite decades of research and substantial progress in treating cancer, most patients with metastatic cancer still experience great suffering and poor outcomes. Metastatic cancer, for the vast majority of patients, remains incurable. In the context of advanced disease, many clinical trials report only incremental advances in progression-free and overall survival. At the same time, the breadth and depth of new scientific discoveries in cancer research are staggering. These discoveries are providing increasing mechanistic detail into the inner workings of normal and cancer cells, as well as into cancer-host interactions; however, progress remains frustratingly slow in translating these discoveries into improved diagnostic, prognostic, and therapeutic interventions. Despite enormous advances in cancer research and progress in progression-free survival, or even cures, for certain cancer types-with earlier detection followed by surgical, adjuvant, targeted, or immuno- therapies, we must challenge ourselves to do even better where patients do not respond or experience evolving therapy resistance. We propose that defining cancer evolution as a separate domain of study and integrating the concept of evolvability as a core hallmark of cancer can help position scientific discoveries into a framework that can be more effectively harnessed to improve cancer detection and therapy outcomes and to eventually decrease cancer lethality. In this perspective, we present key questions and suggested areas of study that must be considered-not only by the field of cancer evolution, but by all investigators researching, diagnosing, and treating cancer.
Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , PronósticoRESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS: RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS: Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION: JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.
Asunto(s)
Azepinas/farmacología , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Indolizinas , Kisspeptinas/genética , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Depuradores de Clase A/genética , Sulfonas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Gene fusions are known to drive many human cancers. Therefore, the functional characterization of newly discovered fusions is critical to understanding the oncobiology of these tumors and to enable therapeutic development. NPM1-TYK2 is a novel fusion identified in CD30 + lymphoproliferative disorders, and here we present the functional evaluation of this fusion gene as an oncogene. The chimeric protein consists of the amino-terminus of nucleophosmin 1 (NPM1) and the carboxyl-terminus of tyrosine kinase 2 (TYK2), including the kinase domain. Using in vitro lymphoid cell transformation assays and in vivo tumorigenic xenograft models we present direct evidence that the fusion gene is an oncogene. NPM1 fusion partner provides the critical homodimerization needed for the fusion kinase constitutive activation and downstream signaling that are responsible for cell transformation. As a result, our studies identify NPM1-TYK2 as a novel fusion oncogene and suggest that inhibition of fusion homodimerization could be a precision therapeutic approach in cutaneous T-cell lymphoma patients expressing this chimera.
RESUMEN
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the development of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.
Asunto(s)
Neoplasias de la Mama , Melanoma , Neoplasias Primarias Secundarias , Neoplasias Cutáneas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Femenino , Humanos , Ganglios Linfáticos/patología , Melanoma/patología , Neoplasias Primarias Secundarias/patología , Neoplasias Cutáneas/patologíaRESUMEN
Breast Cancer Metastasis Suppressor 1 (BRMS1) expression is associated with longer patient survival in multiple cancer types. Understanding BRMS1 functionality will provide insights into both mechanism of action and will enhance potential therapeutic development. In this study, we confirmed that the C-terminus of BRMS1 is critical for metastasis suppression and hypothesized that critical protein interactions in this region would explain its function. Phosphorylation status at S237 regulates BRMS1 protein interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of S237 also directly decreased MDA-MB-231 breast carcinoma migration in vitro and metastases in vivo. The results add significantly to our understanding of how BRMS1 interactions with Sin3/HDAC complexes regulate metastasis and expand insights into BRMS1's molecular role, as they demonstrate BRMS1 C-terminus involvement in distinct protein-protein interactions.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Neoplasias , Proteínas Represoras , Complejo Correpresor Histona Desacetilasa y Sin3RESUMEN
Alternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether Notch1-DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of colitis. In the FFPE (formalin-fixed paraffin-embedded) sections prepared from the colons of ulcerative colitis (UC) and immune-mediated colitis (IRAEC) patients, expression of DCLK1 isoforms correlated positively with Notch1 and negatively with a transcriptional repressor, FoxD3 (Forkhead Box D3). DCLK1 protein staining in these sections was predominantly sub-epithelial (stromal) wherein DCLK1 co-localized with NICD, CD68, CD11c, and neutrophil elastase (NE). NE also co-stained with Citrullinated-H3 indicating the presence of neutrophil extracellular traps. In human neutrophils, elevated levels of DCLK1-S, CXCL-10, Ly6G, MPO, NE, and Notch1/2 in LPS-treated cells were inhibited when LPS was added in conjunction with Notch blocker dibenzazepine (DBZ; LPS + DBZ group). In CR-infected Rag1-/- mice, higher levels of DCLK1 in the colonic crypts were inhibited when mice received DBZ for 10 days coincident with significant dysbiosis, barrier disruption, and colitis. Concurrently, DCLK1 immunoreactivity shifted toward the stroma in CR + DBZ mice with predominance of DCLK1-S that coincided with higher Notch1 levels. Upon antibiotic treatment, partial restoration of crypt DCLK1, reduction in MPO activity, and increased survival followed. When intestinal epithelial cell-specific Dclk1-knockout (Dclk1ΔIEC) or Dclk1ΔIEC;Rag1-/- double knockout (DKO) mice were infected with CR and given a single dose of DBZ, they developed barrier defect and severe colitis with higher levels of stromal DCLK1-S, Ly6G, NE, and Notch1. We therefore propose that, by regulating the mucosal immune responses, the Notch-DCLK1 axis may be integral to the development of murine or human colitis.