Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 10721, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341230

RESUMEN

Herbicide resistance has been observed in Chloris truncata, an Australian native C4 grass and a summer-fallow weed, which is common in no-till agriculture situations where herbicides are involved in crop management. To investigate the role of drought and increased atmospheric carbon dioxide (CO2) in determining weed growth, three trials were conducted using a 'glyphosate-resistant' and a 'glyphosate-susceptible' biotype. The first two trials tested the effect of herbicide (glyphosate) application on plant survival and growth under moisture stress and elevated CO2 respectively. A third trial investigated the effect on plant growth and reproduction under conditions of moisture stress and elevated CO2 in the absence of herbicide. In the first trial, water was withheld from half of the plants prior to application of glyphosate to all plants, and in the second trial plants were grown in either ambient (450 ppm) or elevated CO2 levels (750 ppm) prior to, and following, herbicide application. In both biotypes, herbicide effectiveness was reduced when plants were subjected to moisture stress or if grown in elevated CO2. Plant productivity, as measured by dry biomass per plant, was reduced with moisture stress, but increased with elevated CO2. In the third trial, growth rate, biomass and seed production were higher in the susceptible biotype compared to the resistant biotype. This suggests that a superior ability to resist herbicides may come at a cost to overall plant fitness. The results indicate that control of this weed may become difficult in the future as climatic conditions change.

2.
Sci Rep ; 6: 22345, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26925589

RESUMEN

The noxious weed Nassella neesiana is established on a wide range of productive land throughout southeastern Australia. N. neesiana seeds, when mature, are sharp, causing injury to livestock, thus posing a problem in fodder bales. To reduce infestations of agricultural weeds in situ, production of silage from weed-infested pastures is practised as part of integrated weed management (IWM). However, there is little data to demonstrate whether this process is useful to reduce infestations or the harmful properties of N. neesiana. Therefore, the minimum duration of ensilage required to reduce the viability of N. neesiana seeds was investigated, both with and without addition of ensilage inoculants in this process. Also, the decreasing propensity of the seeds to injure livestock, after various times and conditions of ensilage, was assessed. Ensilage inoculant reduced seed germination probability to zero after 35 days. When no inoculant was added, zero viability was achieved after 42 days. A qualitative assessment of the hardness of ensilaged seeds found seed husks were softer (and therefore safer) after 42 days, whether inoculant was used or not. Therefore, we suggest that both the viability of N. neesiana seeds and hardness of seed casings are significantly reduced after 42 days, thereby reducing the risks of seed dispersal and injury to livestock.


Asunto(s)
Malezas/efectos adversos , Poaceae/efectos adversos , Semillas/efectos adversos , Ensilaje/efectos adversos , Control de Malezas/métodos , Animales , Australia , Germinación , Ganado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...