Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mucosal Immunol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038755

RESUMEN

Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.

2.
J Exp Med ; 221(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38819409

RESUMEN

Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.


Asunto(s)
Plasticidad de la Célula , Interleucina-17 , Periodontitis , Células Th17 , Células Th17/inmunología , Animales , Periodontitis/inmunología , Periodontitis/patología , Plasticidad de la Célula/inmunología , Interleucina-17/metabolismo , Interleucina-17/inmunología , Ratones , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Células T Auxiliares Foliculares/inmunología , Encía/inmunología , Encía/patología , Inmunoglobulina G/inmunología , Pérdida de Hueso Alveolar/inmunología , Pérdida de Hueso Alveolar/patología
3.
Matrix Biol ; 127: 23-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331051

RESUMEN

BACKGROUND: The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS: Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS: In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS: We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.


Asunto(s)
Enfermedades Renales , Macrófagos , Ratones , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Macrófagos/metabolismo , Riñón/metabolismo , Inflamación/metabolismo , Enfermedades Renales/metabolismo , ARN/metabolismo
4.
Front Immunol ; 13: 943159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874681

RESUMEN

Ageing-related delays and dysregulated inflammation in wound healing are well-documented in both human and animal models. However, cellular and molecular changes underlying this impairment in healing progression are not fully understood. In this study, we characterised ageing-associated changes to macrophages in wounds of young and aged mice and investigated transcriptomic differences that may impact the progression of wound healing. Full-thickness wounds created on the dorsum of C57BL/6J young and aged mice were excised on Days 3 and 7 post-wounding for analysis by immunohistochemistry, flow cytometry, and RNA sequencing. Our data revealed that macrophages were significantly reduced in aged wounds in comparison to young. Functional transcriptomic analyses showed that macrophages from aged wounds exhibited significantly reduced expression of cell cycle, DNA replication, and repair pathway genes. Furthermore, we uncovered an elevated pro-inflammatory gene expression program in the aged macrophages correlated with poor inflammation resolution and excessive tissue damage observed in aged wounds. Altogether, our work provides insights into how poorly healing aged wounds are phenotypically defined by the presence of macrophages with reduced proliferative capacity and an exacerbated inflammatory response, both of which are pathways that can be targeted to improve healing in the elderly.


Asunto(s)
Piel , Cicatrización de Heridas , Anciano , Animales , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Piel/metabolismo , Cicatrización de Heridas/genética
5.
Int J Biochem Cell Biol ; 145: 106194, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35276370

RESUMEN

Unlike other non-lymphoid tissues monocytes comprise a large proportion of mononuclear phagocytes present within the gingiva. Their functions and fate remain poorly understood. The oral mucosa faces challenges common to all barrier surfaces, including constant exposure to antigens and the resident commensal bacteria, but also experiences ongoing mechanical damage from mastication. Gingiva monocytes may therefore possess both myeloid functions observed at other barrier sites, such as hypo-responsiveness to bacterial stimulation, and distinctive functions tailored by their unique environment. In this review, we discuss the establishment and function of monocytes and macrophages at several mucosal tissues, and posit potential functions of monocytes within the gingiva tissue.


Asunto(s)
Encía , Monocitos , Bacterias , Encía/microbiología , Macrófagos
6.
PLoS Pathog ; 17(7): e1009768, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329367

RESUMEN

The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection.


Asunto(s)
Colon/inmunología , Colon/parasitología , Parasitosis Intestinales/inmunología , Macrófagos/inmunología , Tricuriasis/inmunología , Animales , Péptidos y Proteínas de Señalización Intercelular/inmunología , Subunidad alfa del Receptor de Interleucina-4/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trichuris/inmunología
7.
Med ; 2(6): 720-735.e4, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33821250

RESUMEN

BACKGROUND: Emerging studies indicate that some coronavirus disease 2019 (COVID-19) patients suffer from persistent symptoms, including breathlessness and chronic fatigue; however, the long-term immune response in these patients presently remains ill-defined. METHODS: Here, we describe the phenotypic and functional characteristics of B and T cells in hospitalized COVID-19 patients during acute disease and at 3-6 months of convalescence. FINDINGS: We report that the alterations in B cell subsets observed in acute COVID-19 patients were largely recovered in convalescent patients. In contrast, T cells from convalescent patients displayed continued alterations with persistence of a cytotoxic program evident in CD8+ T cells as well as elevated production of type 1 cytokines and interleukin-17 (IL-17). Interestingly, B cells from patients with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to Toll-like receptor activation, skewed toward a pro-inflammatory phenotype. Whereas the frequency of IL-6+ B cells was restored in convalescent patients irrespective of clinical outcome, the recovery of IL-10+ B cells was associated with the resolution of lung pathology. CONCLUSIONS: Our data detail lymphocyte alterations in previously hospitalized COVID-19 patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent patients based on distinct lymphocyte phenotypes, with 1 subgroup associated with poorer clinical outcome. We propose that alterations in B and T cell function following hospitalization with COVID-19 could affect longer-term immunity and contribute to some persistent symptoms observed in convalescent COVID-19 patients. FUNDING: Provided by UKRI, Lister Institute of Preventative Medicine, the Wellcome Trust, The Kennedy Trust for Rheumatology Research, and 3M Global Giving.


Asunto(s)
COVID-19 , Linfocitos T CD8-positivos , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , SARS-CoV-2
8.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33635312

RESUMEN

Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier.


Asunto(s)
Encía/citología , Encía/inmunología , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/inmunología , Animales , Médula Ósea/metabolismo , Femenino , Hematopoyesis , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Bucal/citología , Mucosa Bucal/inmunología , RNA-Seq/métodos , Análisis de la Célula Individual/métodos
9.
J Invest Dermatol ; 139(7): 1583-1592, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30703358

RESUMEN

Chronic inflammation is a hallmark of impaired healing in a plethora of tissues, including skin, and is associated with aging and diseases such as diabetes. Diabetic chronic skin wounds are characterized by excessive myeloid cells that display an aberrant phenotype, partially mediated by stable intrinsic changes induced during hematopoietic development. However, the relative contribution of myeloid cell-intrinsic factors to chronic inflammation versus aberrant signals from the local environmental was unknown. Moreover, identification of myeloid cell intrinsic factors that contribute to chronic inflammation in diabetic wounds remained elusive. Here we show that Gr-1+CD11b+ myeloid cells are retained specifically within the presumptive granulation tissue region of the wound at a higher density in diabetic mice and associate with endothelial cells at the site of injury with a higher frequency than in nondiabetic mice. Adoptive transfer of myeloid cells demonstrated that aberrant wound retention is due to myeloid cell intrinsic factors and not the local environment. RNA sequencing of bone marrow and wound-derived myeloid cells identified Selplg as a myeloid cell intrinsic factor that is deregulated in chronic wounds. In vivo blockade of this protein significantly accelerated wound healing in diabetic mice and may be a potential therapeutic target in chronic wounds and other chronic inflammatory diseases.


Asunto(s)
Inflamación/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Cicatrización de Heridas , Traslado Adoptivo , Animales , Células de la Médula Ósea/metabolismo , Antígeno CD11b/genética , Enfermedad Crónica , Diabetes Mellitus Experimental , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones , Fenotipo , Análisis de Secuencia de ARN
10.
Proc Natl Acad Sci U S A ; 115(42): 10738-10743, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30279177

RESUMEN

γδ T cells are enriched at barrier sites such as the gut, skin, and lung, where their roles in maintaining barrier integrity are well established. However, how these cells contribute to homeostasis at the gingiva, a key oral barrier and site of the common chronic inflammatory disease periodontitis, has not been explored. Here we demonstrate that the gingiva is policed by γδ T cells with a T cell receptor (TCR) repertoire that diversifies during development. Gingival γδ T cells accumulated rapidly after birth in response to barrier damage, and strikingly, their absence resulted in enhanced pathology in murine models of the oral inflammatory disease periodontitis. Alterations in bacterial communities could not account for the increased disease severity seen in γδ T cell-deficient mice. Instead, gingival γδ T cells produced the wound healing associated cytokine amphiregulin, administration of which rescued the elevated oral pathology of tcrδ-/- mice. Collectively, our results identify γδ T cells as critical constituents of the immuno-surveillance network that safeguard gingival tissue homeostasis.


Asunto(s)
Anfirregulina/metabolismo , Homeostasis , Boca/inmunología , Periodontitis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Boca/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Subgrupos de Linfocitos T/metabolismo
11.
J Exp Med ; 215(6): 1507-1518, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29789388

RESUMEN

A defining feature of resident gut macrophages is their high replenishment rate from blood monocytes attributed to tonic commensal stimulation of this site. In contrast, almost all other tissues contain locally maintained macrophage populations, which coexist with monocyte-replenished cells at homeostasis. In this study, we identified three transcriptionally distinct mouse gut macrophage subsets that segregate based on expression of Tim-4 and CD4. Challenging current understanding, Tim-4+CD4+ gut macrophages were found to be locally maintained, while Tim-4-CD4+ macrophages had a slow turnover from blood monocytes; indeed, Tim-4-CD4- macrophages were the only subset with the high monocyte-replenishment rate currently attributed to gut macrophages. Moreover, all macrophage subpopulations required live microbiota to sustain their numbers, not only those derived from blood monocytes. These findings oppose the prevailing paradigm that all macrophages in the adult mouse gut rapidly turn over from monocytes in a microbiome-dependent manner; instead, these findings supplant it with a model of ontogenetic diversity where locally maintained subsets coexist with rapidly replaced monocyte-derived populations.


Asunto(s)
Antígenos CD4/metabolismo , Intestinos/citología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Animales Recién Nacidos , Intestinos/microbiología , Ratones Endogámicos C57BL , Microbiota , Monocitos/metabolismo , Fenotipo , Receptores CCR2/metabolismo , Transcripción Genética
12.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30631436

RESUMEN

Recent research has shed light on the plethora of mechanisms by which the gastrointestinal commensal microbiome can influence the local immune response in the gut (in particular, the impact of the immune system on epithelial barrier homeostasis and ensuring microbial diversity). However, an area that is much less well explored but of tremendous therapeutic interest is the impact the gut microbiome has on systemic cell-mediated immune responses. In this commentary, we highlight some key studies that are beginning to broadly examine the different mechanisms by which the gastrointestinal microbiome can impact the systemic immune compartment. Specifically, we discuss the effects of the gut microbiome on lymphocyte polarisation and trafficking, tailoring of resident immune cells in the liver, and output of circulating immune cells from the bone marrow. Finally, we explore contexts in which this new understanding of long-range effects of the gut microbiome can have implications, including cancer therapies and vaccination.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunidad Celular , Médula Ósea/inmunología , Movimiento Celular/inmunología , Humanos , Hígado/inmunología , Linfocitos/citología , Linfocitos/inmunología
13.
Immunity ; 46(1): 133-147, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28087239

RESUMEN

Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.


Asunto(s)
Encía/inmunología , Inmunidad Mucosa/inmunología , Vigilancia Inmunológica/inmunología , Mucosa Bucal/inmunología , Células Th17/inmunología , Animales , Citometría de Flujo , Encía/microbiología , Humanos , Masticación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Mucosa Bucal/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...