Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6560, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323685

RESUMEN

The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron-based superconductors. However, unlike electron-phonon interactions (EPIs), clear-cut observations regarding how electron-AFMM interactions (EAIs) affect the band structure are still lacking. Consequently, critical information on the EAIs, such as its strength and doping dependence, remains elusive. Here we directly observe that EAIs induce a kink structure in the band dispersion of Ba1-xKxMn2As2, and subsequently unveil several key characteristics of EAIs. We found that the coupling constant of EAIs can be as large as 5.4, and it shows strong doping dependence and temperature dependence, all in stark contrast to the behaviors of EPIs. The colossal renormalization of electron bands by EAIs enhances the density of states at Fermi energy, which is likely driving the emergent ferromagnetic state in Ba1-xKxMn2As2 through a Stoner-like mechanism with mixed itinerant-local character. Our results expand the current knowledge of EAIs, which may facilitate the further understanding of many correlated materials where EAIs play a critical role.

2.
Phys Rev Lett ; 126(13): 136402, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861107

RESUMEN

CeOs_{4}Sb_{12} (COS) and PrOs_{4}Sb_{12} (POS) are two representative compounds that provide the ideal vantage point to systematically study the physics of multi-f-electron systems. COS with Ce 4f^{1}, and POS with Pr 4f^{2} configurations show distinct properties of Kondo insulating and heavy fermion superconductivity, respectively. We unveiled the underlying microscopic origin by angle-resolved photoemission spectroscopy studies. Their eV-scale band structure matches well, representing the common characters of conduction electrons in ROs_{4}Sb_{12} systems (R=rare earth). However, f electrons interact differently with conduction electrons in COS and POS. Strong hybridization between conduction electrons and f electrons is observed in COS with band dependent hybridization gaps, and the development of a Kondo insulating state is directly revealed. Although the ground state of POS is a singlet, finite but incoherent hybridization exists, which can be explained by the Kondo scattering with the thermally excited triplet crystalline electric field state. Our results help us to understand the intriguing properties in COS and POS, and provide a clean demonstration of the microscopic differences in heavy fermion systems with 4f^{1} and 4f^{2} configurations.

3.
Nat Commun ; 10(1): 758, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770805

RESUMEN

At the interface between monolayer FeSe films and SrTiO3 substrates the superconducting transition temperature (Tc) is unexpectedly high, triggering a surge of excitement. The mechanism for the Tc enhancement has been the central question, as it may present a new strategy for seeking out higher Tc materials. To reveal this enigmatic mechanism, by combining advances in high quality interface growth, 16O [Formula: see text] 18O isotope substitution, and extensive data from angle resolved photoemission spectroscopy, we provide striking evidence that the high Tc in FeSe/SrTiO3 is the cooperative effect of the intrinsic pairing mechanism in the FeSe and interactions between the FeSe electrons and SrTiO3 phonons. Furthermore, our results point to the promising prospect that similar cooperation between different Cooper pairing channels may be a general framework to understand and design high-temperature superconductors.

4.
Phys Rev Lett ; 121(11): 117002, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265111

RESUMEN

The mechanism of high superconducting transition temperatures (T_{c}) in bismuthates remains under debate despite more than 30 years of extensive research. Our angle-resolved photoemission spectroscopy studies on Ba_{0.51}K_{0.49}BiO_{3} reveal an unexpectedly 34% larger bandwidth than in conventional density functional theory calculations. This can be reproduced by calculations that fully account for long-range Coulomb interactions-the first direct demonstration of bandwidth expansion due to the Fock exchange term, a long-accepted and yet uncorroborated fundamental effect in many body physics.Furthermore, we observe an isotropic superconducting gap with 2Δ_{0}/k_{B}T_{c}=3.51±0.05, and strong electron-phonon interactions with a coupling constant λ∼1.3±0.2. These findings solve a long-standing mystery-Ba_{0.51}K_{0.49}BiO_{3} is an extraordinary Bardeen-Cooper-Schrieffer superconductor, where long-range Coulomb interactions expand the bandwidth, enhance electron-phonon coupling, and generate the high T_{c}. Such effects will also be critical for finding new superconductors.

5.
Phys Rev Lett ; 120(10): 106401, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570327

RESUMEN

van der Waals heterostructures (VDWHs) exhibit rich properties and thus has potential for applications, and charge transfer between different layers in a heterostructure often dominates its properties and device performance. It is thus critical to reveal and understand the charge transfer effects in VDWHs, for which electronic structure measurements have proven to be effective. Using angle-resolved photoemission spectroscopy, we studied the electronic structures of (PbSe)_{1.16}(TiSe_{2})_{m} (m=1, 2), which are naturally occurring VDWHs, and discovered several striking charge transfer effects. When the thickness of the TiSe_{2} layers is halved from m=2 to m=1, the amount of charge transferred increases unexpectedly by more than 250%. This is accompanied by a dramatic drop in the electron-phonon interaction strength far beyond the prediction by first-principles calculations and, consequently, superconductivity only exists in the m=2 compound with strong electron-phonon interaction, albeit with lower carrier density. Furthermore, we found that the amount of charge transferred in both compounds is nearly halved when warmed from below 10 K to room temperature, due to the different thermal expansion coefficients of the constituent layers of these misfit compounds. These unprecedentedly large charge transfer effects might widely exist in VDWHs composed of metal-semiconductor contacts; thus, our results provide important insights for further understanding and applications of VDWHs.

6.
Phys Rev Lett ; 120(6): 066403, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481263

RESUMEN

A key issue in heavy fermion research is how subtle changes in the hybridization between the 4f (5f) and conduction electrons can result in fundamentally different ground states. CeRhIn_{5} stands out as a particularly notable example: when replacing Rh with either Co or Ir, antiferromagnetism gives way to superconductivity. In this photoemission study of CeRhIn_{5}, we demonstrate that the use of resonant angle-resolved photoemission spectroscopy with polarized light allows us to extract detailed information on the 4f crystal field states and details on the 4f and conduction electron hybridization, which together determine the ground state. We directly observe weakly dispersive Kondo resonances of f electrons and identify two of the three Ce 4f_{5/2}^{1} crystal-electric-field levels and band-dependent hybridization, which signals that the hybridization occurs primarily between the Ce 4f states in the CeIn_{3} layer and two more three-dimensional bands composed of the Rh 4d and In 5p orbitals in the RhIn_{2} layer. Our results allow us to connect the properties observed at elevated temperatures with the unusual low-temperature properties of this enigmatic heavy fermion compound.

7.
Nat Commun ; 7: 10840, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26952215

RESUMEN

FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2-ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼ 46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors.

8.
Nano Lett ; 16(3): 1969-73, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26859620

RESUMEN

Superconductivity in FeSe is greatly enhanced in films grown on SrTiO3 substrates, although the mechanism behind remains unclear. Recently, surface potassium (K) doping has also proven able to enhance the superconductivity of FeSe. Here, by using scanning tunneling microscopy, we compare the K doping dependence of the superconductivity in FeSe films grown on two substrates: SrTiO3 (001) and graphitized SiC (0001). For thick films (20 unit cells (UC)), the optimized superconducting (SC) gaps are of similar size (∼9 meV) regardless of the substrate. However, when the thickness is reduced to a few UC, the optimized SC gap is increased up to ∼15 meV for films on SrTiO3, whereas it remains unchanged for films on SiC. This clearly indicates that the FeSe/SrTiO3 interface can further enhance the superconductivity, beyond merely doping electrons. Intriguingly, we found that this interface enhancement decays exponentially as the thickness increases, with a decay length of 2.4 UC, which is much shorter than the length scale for relaxation of the lattice strain, pointing to interfacial electron-phonon coupling as the likely origin.

9.
J Phys Condens Matter ; 27(28): 285502, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26102451

RESUMEN

LaO(0.5)F(0.5)BiSe(2) is a new layered superconductor discovered recently, which shows the superconducting transition temperature of 3.5 K. With angle-resolved photoemission spectroscopy, we study the electronic structure of LaO(0.5)F(0.5)BiSe(2) comprehensively. Two electron-like bands are located around the X point of the Brillouin zone, and the outer pockets connect with each other and form large Fermi surface around Γ and M. These bands show negligible k(z) dispersion, indicating their two-dimensional nature. Based on the Luttinger theorem, the carrier concentration is about 0.53 e(-) per unit cell, close to its nominal value. Moreover, the photoemission data and the band structure calculations agree very well, and the renormalization factor is nearly 1.0, indicating the electron correlations in this material are rather weak. Our results suggest that LaO(0.5)F(0.5)BiSe(2) is a conventional BCS superconductor without strong electron correlations.

10.
Nat Commun ; 5: 5044, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25256736

RESUMEN

The interface between transition metal compounds provides a rich playground for emergent phenomena. Recently, significantly enhanced superconductivity has been reported for single-layer FeSe on Nb-doped SrTiO3 substrate. Yet it remains mysterious how the interface affects the superconductivity. Here we use in situ angle-resolved photoemission spectroscopy to investigate various FeSe-based heterostructures grown by molecular beam epitaxy, and uncover that electronic correlations and superconducting gap-closing temperature (Tg) are tuned by interfacial effects. Tg up to 75 K is observed in extremely tensile-strained single-layer FeSe on Nb-doped BaTiO3, which sets a record high pairing temperature for both Fe-based superconductor and monolayer-thick films, providing a promising prospect on realizing more cost-effective superconducting device. Moreover, our results exclude the direct correlation between superconductivity and tensile strain or the energy of an interfacial phonon mode, and highlight the critical and non-trivial role of FeSe/oxide interface on the high Tg, which provides new clues for understanding its origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA