Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant Physiol ; 195(2): 940-957, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38417836

RESUMEN

Long noncoding RNAs (lncRNAs) play important roles in various biological processes. However, the regulatory roles of lncRNAs underlying fruit development have not been extensively studied. The pumpkin (Cucurbita spp.) is a preferred model for understanding the molecular mechanisms regulating fruit development because of its variable shape and size and large inferior ovary. Here, we performed strand-specific transcriptome sequencing on pumpkin (Cucurbita maxima "Rimu") fruits at 6 developmental stages and identified 5,425 reliably expressed lncRNAs. Among the 332 lncRNAs that were differentially expressed during fruit development, the lncRNA MSTRG.44863.1 was identified as a negative regulator of pumpkin fruit development. MSTRG.44863.1 showed a relatively high expression level and an obvious period-specific expression pattern. Transient overexpression and silencing of MSTRG.44863.1 significantly increased and decreased the content of 1-aminocyclopropane carboxylic acid (a precursor of ethylene) and ethylene production, respectively. RNA pull-down and microscale thermophoresis assays further revealed that MSTRG.44863.1 can interact with S-adenosyl-L-methionine synthetase (SAMS), an enzyme in the ethylene synthesis pathway. Considering that ethylene negatively regulates fruit development, these results indicate that MSTRG.44863.1 plays an important role in the regulation of pumpkin fruit development, possibly through interacting with SAMS and affecting ethylene synthesis. Overall, our findings provide a rich resource for further study of fruit-related lncRNAs while offering insights into the regulation of fruit development in plants.


Asunto(s)
Cucurbita , Frutas , Regulación de la Expresión Génica de las Plantas , Metionina Adenosiltransferasa , ARN Largo no Codificante , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Cucurbita/genética , Cucurbita/crecimiento & desarrollo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
2.
Int J Pharm ; 652: 123865, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38286195

RESUMEN

Clinical treatment for osteosarcoma (OS) is still lacking effective means, and no significant progress in OS treatment have been made in recent years. Single chemotherapy has serious side effects and can produce drug resistance easily, resulting poor therapeutic effect. As a modern and non-invasive treatment form, photodynamic therapy (PDT) is widely used to treat diverse cancers. Chemotherapy in combination with PDT is a particularly efficient antitumor method that could overcome the defects of monotherapies. Since mitochondria is a key subcellular organelle involved in cell apoptosis regulation, targeting tumor cells mitochondria for drug delivery has become an important entry point for anti-tumor therapy. Herein, we rationally designed a core-shell structured biomimetic nanoplatform, i.e., D@SLNP@OSM-IR780, to achieve tumor homologous targeting and mitochondria targeted drug release for chemotherapy combined with PDT against OS. Upon 808 nm laser irradiation, D@SLNP@OSM-IR780 exhibited excellent photo-cytotoxicity in vitro. The excellent targeting effect of D@SLNP@OSM-IR780 in tumor tissues produced a tumor inhibition rate of 98.9% in vivo. We further indicated that synergistic chemo-photodynamic effect induced by D@SLNP@OSM-IR780 could activate mitochondria-mediated apoptosis pathway, along with host immune response and potential photothermal effect. On the whole, D@SLNP@OSM-IR780 is revealed to be a promising platform for OS targeted combination therapeutics.


Asunto(s)
Neoplasias Óseas , Nanopartículas , Osteosarcoma , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Biomimética , Nanopartículas/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Mitocondrias , Línea Celular Tumoral
3.
Plants (Basel) ; 12(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896048

RESUMEN

Pericarp color is a crucial commercial trait influencing consumer preferences for bitter gourds. However, until now, the gene responsible for this trait has remained unidentified. In this study, we identified a gene (McAPRR2) controlling pericarp color via a genome-wide association study (GWAS) utilizing the resequencing data of 106 bitter gourd accessions. McAPRR2 exhibits three primary haplotypes: Hap1 is a wild type with a green pericarp, Hap2 is a SA (South Asian) and SEA (Southeast Asia) type with a green pericarp, and Hap3 is primarily a SEA type with a light green pericarp. The McAPRR2 haplotype is significantly correlated with both pericarp color and ecological type. Importantly, McAPRR2 with the light green pericarp demonstrated premature termination due to a 15 bp sequence insertion. The phylogenetic tree clustered according to pericarp color and ecological type, using SNPs located in the McAPRR2 gene and its promoter. High πwild/SEA and πSA/SEA values indicate high nucleotide diversity between wild and SEA types and between SA and SEA types in the McAPRR2 gene. The haplotypes, phylogenetic tree, and nucleotide diversity of McAPRR2 suggest that McAPRR2 has undergone domestication selection. This study identifies McAPRR2 as the key gene determining pericarp color in bitter gourds and introduces a novel insight that McAPRR2 is subject to domestication selection.

4.
Eur J Pharm Sci ; 190: 106574, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659459

RESUMEN

Biomimetic nano-platforms have attracted extensive attention due to their good biocompatibility, low immunogenicity, and homologous targeting to lesions. In this study, glioma cell membranes are used to encapsulate indocyanine green (ICG) loaded nanoparticles (SLNP/ICG), termed as SLNP/ICG@M for targeted photodynamic therapy (PDT) against glioma. Cell membrane modification significantly enhances cellular uptake of SLNP/ICG@M in homologous glioma cells in vitro and tumor distribution in vivo. Furthermore, SLNP/ICG@M can stimulate glioma cells to generate plentiful reactive oxygen species (ROS) under NIR irradiation, finally producing excellent photo-cytotoxicity and the optimal tumor growth inhibition with a tumor suppression rate of 93.2%. We also confirm that SLNP/ICG@M combined with NIR irradiation could activate mitochondria mediated apoptosis pathway, and the increased proliferation of CD4+ T cells and CD8+ T cells accompanied by immune activation further enhances PDT effect of SLNP/ICG@M. Herein, SLNP/ICG@M is a promising biomimetic nano drug delivery system for glioma targeted PDT therapy.


Asunto(s)
Glioma , Nanopartículas , Fotoquimioterapia , Humanos , Biomimética , Linfocitos T CD8-positivos , Glioma/tratamiento farmacológico , Verde de Indocianina , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico
5.
Plant Dis ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755413

RESUMEN

Balsam (Impatiens balsamina L.) is an ornamental plant cultivated extensively in China and elsewhere, but it has also been used as a medicinal plant for thousands of years (Qian et al., 2023). In 2022, an examination of 10 garden-grown I. balsamina plants in Chaoyang, Beijing, China revealed eight plants with blotches, mosaic symptoms, and deformed leaves (Fig. S1A). Total RNA was extracted from the symptomatic leaf tissue of these eight plants using the TRIzol reagent (Invitrogen, USA). Four RNA preparations (high quality and quantity) were combined for the small RNA sequencing analysis (TIANGEN Biotech Co., China). A total of 16,509,586 clean reads (18-30 nt) were obtained and assembled into larger contigs using Velvet 1.0.5. A search of the National Center for Biotechnology Information non-redundant database using BLASTX indicated 72, 24, and 19 contigs were homologous to broad bean wilt virus 2 (BBWV2), cucumber mosaic virus (CMV), and impatiens cryptic virus 1 (ICV1) sequences (Zheng et al., 2022), respectively. To verify the next-generation sequencing data, the following three sets of primer pairs were designed according to the contig sequences of these three viruses: CMV-F:5'-ATGGACAAATCTGAATCAACCAGTGC-3'/CMV-R: 5'-CCGTAAGCTGGATGGACAACC-3'; BBWV2-F:5'-CAATTTGGACAACTACAATTTGCC-3'/ BBWV2-R: 5'-GCTGAGTCTAAATCCCATCTATC-3'; and ICV1-F: 5'-CGCACAACT CTACAAT GACATGGTC-3'/ICV1-R: 5'-AGTTCCATCGTCCAGTAGGCG-3'. The primers were used to amplify CMV, BBWV2, and ICV1 sequences by reverse transcription-polymerase chain reaction (RT-PCR), with individual RNA preparations serving as the template. The CMV, BBWV2, and ICV1 target sequences were amplified from eight, four, and four samples, respectively (Fig. S1B). To evaluate virus infectivity, Nicotiana benthamiana seedlings were inoculated using a leaf tissue extract prepared from an infected I. balsamina plant. At 7 days post-inoculation, disease symptoms were detected on N. benthamiana systemic leaves (e.g., deformation and apical necrosis) (Fig. S1C). Confirmation tests involving RT-PCR indicated the N. benthamiana plants were infected with BBWV2 and CMV, but not with ICV1 (Fig. S1D). To obtain the complete BBWV2 genome sequence (RNA1 and RNA2), virus-specific PCR primers (Table S1) were designed to produce the terminal sequences via 5' and 3' rapid amplification of cDNA ends (RACE), which was completed using the SMARTer RACE 5'/3' Kit (Clontech, China). The RNA1 and RNA2 sequences comprised 5,957 nt (GenBank: OQ857921) and 3,614 nt (GenBank: OQ857922), respectively. The BLAST analyses revealed RNA1 and RNA2 were similar to sequences in other BBWV2 isolates (sequence identities of 78.88% to 95.15% and 80.83% to 91.51%, respectively). Using the neighbor-joining method and MEGA 7.0, the phylogenetic relationships between the BBWV2 isolated in this study and other isolates were determined on the basis of the full-length RNA1 and RNA2 sequences (Kumar et al., 2016). According to the RNA1 and RNA2 sequences, the BBWV2 isolated in this study was most closely related to the BBWV2 isolate from Gynura procumbens (GenBank: KX686589) and the BBWV2 isolate from Nicotiana tabacum (GenBank: KX650868), respectively (Fig. S1E). To the best of our knowledge, this is the first report of I. balsamina naturally infected with BBWV2 in China. The study findings may be useful for detecting BBWV2 in I. balsamina and for diagnosing and managing the associated disease. The authors declare no conflict of interest. Yanhong Qiu and Haijun Zhang contributed equally to this paper. Funding: This research was supported by the Beijing Academy of Agriculture and Forestry Foundation, China (KYCX202305, QNJJ202131, and KJCX20230214). References: Qian H.Q., et al. 2023. J Ethnopharmacol. 303. Zheng Y., et al. 2022. Arch Virol. 167: 2099-2102. Kumar et al. 2016. Mol Biol Evol. 33: 1870-1874.

7.
Methods Mol Biol ; 2638: 365-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781656

RESUMEN

In order to promote the widespread application of single-nucleotide polymorphism (SNP)-based genotyping, a new method was developed and called target SNP-seq which combined the advantages of multiplex polymerase chain reaction (PCR) amplification and high throughput sequencing on Illumina X Ten platform. Compared with kompetitive allele-specific PCR (KASP), microchips, and genotyping by sequencing (GBS), target SNP-seq uses perfect SNPs based on the analysis of variome (whole-genome sequence data of different accessions) and is flexible, cost-effective, and highly accurate for genotyping middle-scale SNPs. It could genotype hundreds of SNPs in massive DNA samples within 3 days at the cost of $7 for each DNA sample. The high efficiency and low cost of target SNP-seq make it more competitive than current SNP genotyping methods, and it has excellent potential for application in genetic research, as well as in promoting plant-breeding processes in the near future.


Asunto(s)
Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Genotipo , Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa Multiplex , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Tecnología
8.
Hortic Res ; 10(1): uhac228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643758

RESUMEN

Momordica charantia L. var. abbreviata Ser. (Mca), known as bitter gourd or bitter melon, is a Momordica variety with medicinal value and belongs to the Cucurbitaceae family. In view of the lack of genomic information on bitter gourd and other Momordica species and to promote Mca genomic research, we assembled a 295.6-Mb telomere-to-telomere (T2T) high-quality Mca genome with six gap-free chromosomes after Hi-C correction. This genome is anchored to 11 chromosomes, which is consistent with the karyotype information, and comprises 98 contigs (N50 of 25.4 Mb) and 95 scaffolds (N50 of 25.4 Mb). The Mca genome harbors 19 895 protein-coding genes, of which 45.59% constitute predicted repeat sequences. Synteny analysis revealed variations involved in fruit quality during the divergence of bitter gourd. In addition, assay for transposase-accessible chromatin by high-throughput sequencing and metabolic analysis showed that momordicosides and other substances are characteristic of Mca fruit pulp. A combined transcriptomic and metabolomic analysis revealed the mechanisms of pigment accumulation and cucurbitacin biosynthesis in Mca fruit peels, providing fundamental molecular information for further research on Mca fruit ripening. This report provides a new genetic resource for Momordica genomic studies and contributes additional insights into Cucurbitaceae phylogeny.

9.
BMC Plant Biol ; 23(1): 39, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650465

RESUMEN

Melon is an important horticultural crop with a pleasant aromatic flavor and abundance of health-promoting substances. Numerous melon varieties have been cultivated worldwide in recent years, but the high number of varieties and the high similarity between them poses a major challenge for variety evaluation, discrimination, as well as innovation in breeding. Recently, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), two robust molecular markers, have been utilized as a rapid and reliable method for variety identification. To elucidate the genetic structure and diversity of melon varieties, we screened out 136 perfect SSRs and 164 perfect SNPs from the resequencing data of 149 accessions, including the most representative lines worldwide. This study established the DNA fingerprint of 259 widely-cultivated melon varieties in China using Target-seq technology. All melon varieties were classified into five subgruops, including ssp. agrestis, ssp. melo, muskmelon and two subgroups of foreign individuals. Compared with ssp. melo, the ssp. agrestis varieties might be exposed to a high risk of genetic erosion due to their extremely narrow genetic background. Increasing the gene exchange between ssp. melo and ssp. agrestis is therefore necessary in the breeding procedure. In addition, analysis of the DNA fingerprints of the 259 melon varieties showed a good linear correlation (R2 = 0.9722) between the SSR genotyping and SNP genotyping methods in variety identification. The pedigree analysis based on the DNA fingerprint of 'Jingyu' and 'Jingmi' series melon varieties was consistent with their breeding history. Based on the SNP index analysis, ssp. agrestis had low gene exchange with ssp. melo in chromosome 4, 7, 10, 11and 12, two specific SNP loci were verified to distinguish ssp. agrestis and ssp. melon varieties. Finally, 23 SSRs and 40 SNPs were selected as the core sets of markers for application in variety identification, which could be efficiently applied to variety authentication, variety monitoring, as well as the protection of intellectual property rights in melon.


Asunto(s)
Cucurbitaceae , Cucurbitaceae/genética , Polimorfismo de Nucleótido Simple/genética , Fitomejoramiento , Técnicas de Genotipaje/métodos , Dermatoglifia del ADN , Repeticiones de Microsatélite/genética , Variación Genética
10.
Plant Dis ; 107(4): 1210-1213, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36265141

RESUMEN

Fusarium oxysporum f. sp. cucumerinum, which causes root and vascular wilting, is one of the most devastating diseases infecting cucumber. Here, we report the first genome resource with high-quality assembly for F. oxysporum f. sp. cucumerinum strain Race-4, which is primarily endemic to China. The genome was 59.11 Mb in size and consisted of 48 scaffolds with an N50 of 3.87 Mb using PacBio long reads (301.77×) sequencing, and encodes 14,898 proteins from analyzing RNA-seq data. Gene annotations identified pathogen-host interaction genes, fungal virulence factors, secreted proteins, transcription factors, and secondary metabolite biosynthesis gene. Moreover, functional genes reported in previous studies were also identified in the genome of Race-4. These genes and genome resource may play important roles in understanding F. oxysporum f. sp. cucumerinum-cucumber interactions and will be useful for further research.


Asunto(s)
Cucumis sativus , Fusarium , Cucumis sativus/microbiología , Fusarium/genética , Factores de Virulencia , Interacciones Huésped-Patógeno
11.
Front Genet ; 13: 933022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846119

RESUMEN

Cucurbita pepo L. is an essential economic vegetable crop worldwide, and its production is severely affected by powdery mildew (PM). However, our understanding of the molecular mechanism of PM resistance in C. pepo is very limited. Long non-coding RNAs (lncRNAs) play an important role in regulating plant responses to biotic stress. Here, we systematically identified 2,363 reliably expressed lncRNAs from the leaves of PM-susceptible (PS) and PM-resistant (PR) C. pepo. The C. pepo lncRNAs are shorter in length and expressed at a lower level than the protein-coding transcripts. Among the 2,363 lncRNAs, a total of 113 and 146 PM-responsive lncRNAs were identified in PS and PR, respectively. Six PM-responsive lncRNAs were predicted as potential precursors of microRNAs (miRNAs). In addition, 58 PM-responsive lncRNAs were predicted as targets of miRNAs and one PM-responsive lncRNA was predicted as an endogenous target mimic (eTM). Furthermore, a total of 5,200 potential cis target genes and 5,625 potential trans target genes were predicted for PM-responsive lncRNAs. Functional enrichment analysis showed that these potential target genes are involved in different biological processes, such as the plant-pathogen interaction pathway, MAPK signaling pathway, and plant hormone signal transduction pathway. Taken together, this study provides a comprehensive view of C. pepo lncRNAs and explores the putative functions of PM-responsive lncRNAs, thus laying the foundation for further study of the regulatory mechanisms of lncRNAs responding to PM.

12.
Plant Dis ; 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35657712

RESUMEN

Water dropwort (Oenanthe javanica) is an aquatic perennial plant that has been cultivated in many regions in Asia for thousands of years. In China, it is an economically important vegetable that has been consumed as food, while also being used as a folk remedy to alleviate diseases (Liu et al., 2021). In 2021, during a disease survey of a greenhouse in Beijing, China, chlorotic spots were detected on many water dropwort plants (Fig. S1A). Twenty-seven water dropwort samples were collected for the extraction of total RNA using the TRIzol reagent (Invitrogen, USA). High-quality RNA samples from three water dropwort plants were combined and used as the template for constructing a single small RNA library (BGI-Shenzhen Company, China). The Velvet 1.0.5 software was used to assemble the clean reads (18 to 28 nt) into larger contigs, which were then compared with the nucleotide sequences in the National Center database using the BLASTn algorithm. Thirty-eight contigs matched sequences in the tomato spotted wilt virus (TSWV) genome. No other viruses were detected. Twenty-seven leaf samples were analyzed in an enzyme-linked immunosorbent assay (ELISA) with anti-TSWV antibody (Agdia, USA), which revealed 17 positive reaction. Two sets of primer pairs targeting different parts of the S RNA (Table S1) was used to verify the TSWV infection on water dropwort by reverse transcription (RT)-PCR followed by Sanger sequencing (BGI-Shenzhen, China). The TSWV target sequences were amplified from 17 samples, which was consistent with the ELISA results. The sequenced 861-bp PCR product shared 99.8% nucleotide sequence identity with TSWV isolate MR-01 (MG593199), while the 441-bp amplicon shared a 99.2% nucleotide sequence identity with MR-01 (MG593199). To obtain the whole genome sequence of TSWV (S, M, and L RNA sequences), specific RT-PCR primers were designed (Table S1) and used to amplify their respective fragments from one representative sample (TSWV-water dropwort). The amplified products were inserted into PCE2TA/Blunt-Zero vector (Vazyme Biotech Co., Ltd, China) and then sequenced (BGI-Shenzhen, China). The S, M, and L RNA sequences were determined to be 2,952 nt (accession no. OM154969), 4,776 nt (accession no. OM154970), and 8,914 nt (accession no. OM154971), respectively. BLASTn analysis demonstrated that the whole genome sequence was highly conserved. The nucleotide identities between this isolate and other TSWV isolates ranged from 98.6% to 99.6% (S RNA), 98.9% to 99.2% (M RNA), and 97.3% to 98.7% (L RNA). Using MEGA 7.0, the phylogenetic relationships of TSWV were determined on the basis of the S, M, and L RNA full-length sequences (Kumar et al., 2016). In the S RNA derived phylogenetic tree, the water dropwort isolate was closely related to the MR-01 isolate from the USA (MG593199). In the M RNA and L RNA derived phylogenetic trees, the water dropwort isolate formed a branch with only a TSWV isolate from eggplant. Additionally, the M and L RNA sequences were most similar to sequences in TSWV isolates from China and Korea, respectively (Fig. S1B). To the best of our knowledge, this is the first report of water dropwort as a natural host for TSWV in China and the second report worldwide since the first finding in the Korea (Kil et al. 2020). TSWV has caused serious problems on many crops in the world, and the infection of TSWV on water dropwort in a greenhouse should not be looked lightly. Firstly, the virus can be passed on from generation to generation in infected water dropwort due to the vegetative propagation mode of the plant in production, thus threaten the production of this vegetable crop. In addition, infected water dropwort may serve as a reservoir for the virus, thus potentially posing a threat for causing TSWV spread in the affected greenhouses. The author(s) declare no conflict of interest. Funding: This research was supported by the Beijing Academy of Agriculture and Forestry Foundation, China (QNJJ202131, KJCX20200212, and KJCX20200113). References: Kil et al. 2020. Plant Pathol. J. 36: 67-75 Kumar et al. 2016. Mol Biol Evol, 33: 1870-1874 Liu et al. 2021. Horticulture Research. 8:1-17.

13.
Genomics ; 114(3): 110348, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339630

RESUMEN

Single nucleotide polymorphisms (SNPs) are widely used in genetic research and molecular breeding. To date, the genomes of many vegetable crops have been assembled, and hundreds of core germplasms for each vegetable have been sequenced. However, these data are not currently easily accessible because they are stored on different public databases. Therefore, a vegetable crop SNP database should be developed that hosts SNPs demonstrated to have a high success rate in genotyping for genetic research (herein, "alpha SNPs"). We constructed a database (VegSNPDB, http://www.vegsnpdb.cn/) containing the sequence data of 2032 germplasms from 16 vegetable crop species. VegSNPDB hosts 118,725,944 SNPs of which 4,877,305 were alpha SNPs. SNPs can be searched by chromosome number, position, SNP type, genetic population, or specific individuals, as well as the values of MAF, PIC, and heterozygosity. We hope that VegSNPDB will become an important SNP database for the vegetable research community.


Asunto(s)
Polimorfismo de Nucleótido Simple , Verduras , Humanos , Verduras/genética , Fitomejoramiento , Productos Agrícolas/genética , Secuencia de Bases , Genoma de Planta
14.
Plant Dis ; 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35224985

RESUMEN

Squash leaf curl China virus (SLCCNV) is a species in the genus Begomovirus that possess a bipartite genome. It is transmitted by the whitefly species Bemisia tabaci and infects cucurbit crops in various parts of the Old World (Wu et al., 2020). In 2020, tomato plants with curled, distorted and yellow leaves were found in a greenhouse in Shouguang, Shandong Province, China (Fig. S1). Leaves with these symptoms were collected from 11 plants and the total RNA was extracted with TRIzol reagent (Invitrogen, USA). Five RNA extracts of the highest quality were combined and a small RNA library was generated by the company (BGI-Shenzhen, China). About 22,338,920 clean reads (18-28nt) were acquired and assembled into larger contigs with the software Velvet 1.0.5. These were further compared against nucleotide sequences in the National Center for Biotechnology Information (NCBI) databases with BLASTn searches. Not unexpectedly, there were many assembled contigs that had high identities (90%-100% identities) with known tomato-infecting viruses, including 241 contigs matching tomato chlorosis virus, 26 contigs matching southern tomato virus, and 4 contigs matching tomato yellow leaf curl virus. However, 12 contigs had high identities (90%-100%) with the genomic DNA-A of SLCCNV, while 9 other contigs had high identities (90%-100%) with the genomic DNA-B of SLCCNV. To verify the presence of SLCCNV in tomato plants, two sets of primer pairs were designed according to the specific contigs assembled from derived small interfering RNAs (vsiRNAs). The primer pairs A742-F/A742-R (5'-GTAATACGAGCATCCGCACGGTAG-3'/5'-CGTGGAGGGCGAC AAACAGCTAACG-3') and B539-F/B539-R (5'-GCTACTTTCAAGGACGAAGAAGAGG-3'/5'-CG ACATAGATTTCTGGTCGGTGGGC-3') directed the amplification of 742 bp and 539 bp for DNA-A and DNA-B fragments, respectively, from the total genomic DNA of the 11 tomato samples. The DNA-A and DNA-B of SLCCNV were both detected from all of the tomato samples. After sequencing, the 742 bp PCR products shared 100% nucleotide sequence identity with the DNA-A of SLCCNV isolate GDXW (MW389919), whereas the PCR-amplified 539 bp fragments shared 100% nucleotide sequence identity with the DNA-B of SLCCNV isolate GDXW (MW389920). The full-length of DNA-A and DNA-B components were amplified with back-to-back primers A-F/A-R (Wu et al., 2020) and B-F/B-R (5'-GATAAACACGTCTCATTGCACCGC-3'/5'-GAGACGTGTTTATCAATATGGA CG-3'), respectively. The amplified fragments were further cloned into the PCE2TA/Blunt-Zero vector (Vazyme Biotech Co., China). After sequencing, the complete sequence of DNA-A was 2736 nt in length (MZ682117), while the DNA-B was 2718 nt in length (OK236348). The phylogenetic relationships of the DNA-A and DNA-B components were determined using MEGA 7 based on the full-length sequences of DNA-A and DNA-B, respectively (Kumar et al., 2016). Results showed that the DNA-A formed an independent cluster and was mostly related to the GDHY (MW389917) in the phylogenetic tree constructed using the neighbor-joining (NJ) method, while the DNA-B formed an independent cluster and was mostly related to the SLCCNV isolate BLDG (MW389928) and isolate GDBL (MW389922) (Fig. S2). The nt identities of DNA-A were also calculated with SDT v1.2 by comparison with other begomovirus sequences from the initial BLASTn analysis (Muhire et al., 2014), showing that the virus shared 99.4% sequence identity with SLCCNV isolate GDHY (MW389917). According to the current demarcation threshold for begomoviruses, recommended by the International Committee on Taxonomy of Viruses (ICTV) (91% nt identity) (Brown et al., 2015), this virus identified from tomato is a distinct strain of SLCCNV, designated SLCCNV-SDSG. To the best of our knowledge, this is the first report of a natural infection of SLCCNV on tomato in China. SLCCNV has caused serious problems in cucurbit production in some areas, so it will be important to investigate if tomato plays a role in the disease biology by serving as a reservoir host. The author(s) declare no conflict of interest. Funding: The funding for this research was supported by the Beijing Academy of Agriculture and Forestry Foundation, China (QNJJ202131, QNJJ201915, KJCX20200113). References: Brown et al. 2015. Arch Virol 160: 1593-1619 Kumar et al. 2016. Mol Biol Evol, 33: 1870-1874 Muhire et al. 2014. Plos One, 9 Wu et al. 2020. J Integr Agr, 19: 570-577.

15.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043161

RESUMEN

The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.

16.
Phytopathology ; 112(3): 630-642, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34346759

RESUMEN

Bacterial wilt, caused by Ralstonia solanacearum, is a serious disease in pepper. However, the interaction between the pathogen and pepper remains largely unknown. This study aimed to gain insights into determinants of pepper susceptibility and R. solanacearum pathogenesis. We assembled the complete genome of R. solanacearum strain Rs-SY1 and identified 5,106 predicted genes, including 84 type III effectors (T3E). RNA-seq was used to identify differentially expressed genes (DEGs) in susceptible pepper CM334 at 1 and 5 days postinoculation (dpi) with R. solanacearum. Dual RNA-seq was used to simultaneously capture transcriptome changes in the host and pathogen at 3 and 7 dpi. A total of 1,400, 3,335, 2,878, and 4,484 DEGs of pepper (PDEGs) were identified in the CM334 hypocotyls at 1, 3, 5, and 7 dpi, respectively. Functional enrichment of the PDEGs suggests that inducing ethylene production, suppression of photosynthesis, downregulation of polysaccharide metabolism, and weakening of cell wall defenses may contribute to successful infection by R. solanacearum. When comparing in planta and nutrient agar growth of the R. solanacearum, 218 and 1,042 DEGs of R. solanacearum (RDEGs) were detected at 3 and 7 dpi, respectively. Additional analysis of the RDEGs suggested that enhanced starch and sucrose metabolism, and upregulation of virulence factors may promote R. solanacearum colonization. Strikingly, 26 R. solanacearum genes were found to have similar DEG patterns during a variety of host-R. solanacearum interactions. This study provides a foundation for a better understanding of the transcriptional changes during pepper-R. solanacearum interactions and will aid in the discovery of potential susceptibility and virulence factors.


Asunto(s)
Capsicum , Ralstonia solanacearum , Capsicum/genética , Capsicum/microbiología , Hipocótilo , Enfermedades de las Plantas/microbiología , RNA-Seq , Ralstonia solanacearum/fisiología , Transcriptoma
18.
Hortic Res ; 8(1): 35, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33517348

RESUMEN

Chayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.

19.
Oncol Res ; 29(5): 351-363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37305160

RESUMEN

The blood-brain barrier (BBB) is an essential component in regulating and maintaining the homeostatic microenvironment of the central nervous system (CNS). During the occurrence and development of glioblastoma (GBM), BBB is pathologically destroyed with a marked increase in permeability. Due to the obstruction of the BBB, current strategies for GBM therapeutics still obtain a meager success rate and may lead to systemic toxicity. Moreover, chemotherapy could promote pathological BBB functional restoration, which results in significantly reduced intracerebral transport of therapeutic agents during multiple administrations of GBM and the eventual failure of GBM chemotherapy. The effective delivery of intracerebral drugs still faces severe challenges. However, strategies that regulate the pathological BBB to enhance the transport of therapeutic agents across the barrier may provide new opportunities for the effective and safe treatment of GBM. This article reviews the structure and function of BBB in physiological states, the mechanisms underlying BBB pathological fenestration during the development of GBM, and the therapeutic strategies of GBM based on BBB intervention and medicinal drugs transporting across the BBB.


Asunto(s)
Barrera Hematoencefálica , Glioblastoma , Humanos , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Microambiente Tumoral
20.
Hortic Res ; 7(1): 199, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328440

RESUMEN

Snake gourd (Trichosanthes anguina L.), which belongs to the Cucurbitaceae family, is a popular ornamental and food crop species with medicinal value and is grown in many parts of the world. Although progress has been made in its genetic improvement, the organization, composition, and evolution of the snake gourd genome remain largely unknown. Here, we report a high-quality genome assembly for snake gourd, comprising 202 contigs, with a total size of 919.8 Mb and an N50 size of 20.1 Mb. These findings indicate that snake gourd has one of the largest genomes of Cucurbitaceae species sequenced to date. The snake gourd genome assembly harbors 22,874 protein-coding genes and 80.0% of the genome consists of repetitive sequences. Phylogenetic analysis reveals that snake gourd is closely related to sponge gourd but diverged from their common ancestor ~33-47 million years ago. The genome sequence reported here serves as a valuable resource for snake gourd genetic research and comparative genomic studies in Cucurbitaceae and other plant species. In addition, fruit transcriptome analysis reveals the candidate genes related to quality traits during snake gourd fruit development and provides a basis for future research on snake gourd fruit development and ripening at the transcript level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA