Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Chromatogr ; 38(8): e5905, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806776

RESUMEN

The present study examined the pharmacokinetics of IMM-H012 in rat plasma, utilizing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Internal standard cilostazol was employed, and plasma samples were processed using acetonitrile precipitation. A mobile phase (acetonitrile-0.1% formic acid in water) with gradient elution was used to achieve chromatographic separation using a UPLC BEH C18 column. In multiple reaction monitoring mode, electrospray ionization MS/MS was utilized in positive ionization mode. Based on findings, the lower limit of quantification was 2 ng/mL, and the linearity of IMM-H012 in rat plasma was found to be acceptable within the range of 2-2000 ng/mL (R2 > 0.995). The intra-day and inter-day precision relative standard deviation was less than 14% of IMM-H012 in rat plasma. The matrix effect was within the range of 102%-107%, and the accuracy ranged from 92% to 113%. Pharmacokinetics of IMM-H012 in rats after oral administration were successfully studied using UPLC-MS/MS.


Asunto(s)
Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Ratas , Cromatografía Líquida de Alta Presión/métodos , Masculino , Reproducibilidad de los Resultados , Modelos Lineales , Límite de Detección , Sensibilidad y Especificidad , Administración Oral
2.
J Anal Methods Chem ; 2024: 9811466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742189

RESUMEN

SIPI6398 is a novel anti-schizophrenia agent with a new mechanism of action and demonstrates better target selectivity and safety compared to its competitors. However, few in vivo studies on the pharmacokinetics and bioavailability of SIPI6398 have been performed. A rapid and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was developed for accurate quantification of SIPI6398 in rat plasma. A simple protein precipitation of acetonitrile-methanol (9 : 1, v/v) was used to treat plasma. Chromatography was performed on a UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 µm) at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile-water (with 0.1% formic acid) and gradient elution was used, and the elution time was 4 minutes. Quantitative analysis was performed using electrospray ionization (ESI) in positive ion detection mode with multiple reaction monitoring (MRM) mode. To evaluate the pharmacokinetics and bioavailability, SIPI6398 was administered to rats in two different ways: oral (4 mg/kg) and intravenous (2 mg/kg) administration. The calibration curve for the UPLC-MS/MS approach shows excellent linearity in the range of 1-2000 ng/mL with an r value above 0.99. The precision, accuracy, recovery, matrix effect, and stability results all meet the criteria established for biological analytical methods. The UPLC-MS/MS method was successfully applied it to pharmacokinetics study of SIPI6398. The bioavailability of SIPI6398 was calculated to be 13.2%. These studies have the potential to contribute towards a more comprehensive comprehension of the pharmacokinetics and bioavailability of SIPI6398.

3.
Int J Anal Chem ; 2024: 7971021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463657

RESUMEN

Ziyuglycoside I and ziyuglycoside II are important active components of Sanguisorba officinalis L., which have excellent pharmacological effects, such as antioxidant and anticancer effects. However, the bioavailability of ziyuglycoside I and ziyuglycoside II has not been reported. This work aims to establish a UPLC-MS/MS method to study the pharmacokinetics of ziyuglycoside I and ziyuglycoside II in rats under different administration routes (intragastric and intravenous administration) and to calculate the bioavailability. The concentration of ziyuglycoside I and ziyuglycoside II in rat plasma in the range of 2-2000 ng/mL showed a good linear relationship (r > 0.99). The intra-day accuracies of ziyuglycoside I and ziyuglycoside II ranged from 87% to 110%, and the inter-day accuracies ranged from 97% to 109%. The intra-day precision was less than 15% and the inter-day precision was less than 14%. The matrix effects ranged from 88% to 113%. The recoveries were all above 84%. The developed UPLC-MS/MS method for the determination of ziyuglycoside I and ziyuglycoside II in rat plasma was applied to pharmacokinetics. The bioavailability of ziyuglycoside I and ziyuglycoside II was measured at 2.6% and 4.6%, respectively.

4.
Drug Dev Ind Pharm ; 50(4): 354-362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456836

RESUMEN

OBJECTIVE: To develop a sensitive and fast detection method via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to assess the concentration of ajuforrestin A, ajuforrestin B, ajugamacrin and 8-O-Acetylharpagide primarily derived from Ajuga plants in mice blood and their pharmacokinetics. METHODS: Single protein precipitation with high-proportioned acetonitrile is chosen for sample clean-up. The UPLC HSS T3 (2.1 mm × 100 mm, 1.8 µm) column with a mobile phase in gradient elution mode at the flow rate of 0.4 mL/min was used for sample separation. Acetonitrile was selected as the organic phase solution and water containing 0.1% formic acid was chosen as the aqueous solution. A tandem mass spectrometer containing an electrospray ionization (ESI) source in the positive ionization mode was used to detect four compounds via multiple reaction monitoring (MRM). RESULTS: The calibration curves (5-1000 ng/mL) of four compounds were linear with correlation coefficients > 0.997. The matrix effects, accuracy, precision, and recovery were all within permissible scope. CONCLUSIONS: In this approach, the corresponding pharmacokinetic parameters were successfully clarified in mouse for the first time, which provided a theoretical basis for the improvement of the standard of Ajuga plants and the safety of clinical medication. Furthermore, this method may provide the UPLC-MS/MS evidence for the differentiation of the main close relative varieties of genus Ajuga according to these plants contain different mixtures of the four marker compounds.


Asunto(s)
Ajuga , Piranos , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Ajuga/metabolismo , Cromatografía Líquida con Espectrometría de Masas , Acetonitrilos
5.
Biomed Chromatogr ; 38(4): e5821, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217347

RESUMEN

In this paper, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for quantifying the levels of crassicauline A, fuziline, karacoline, and songorine in rat plasma. After processing the rat plasma, the proteins in the plasma were separated by extracting the analytes with acetonitrile-methanol (9:1, v/v). The chromatographic column used was the UPLC HSS T3 column, and the mobile phase (methanol-water with 0.1% formic acid) under a gradient elution profile was used to separate the four compounds, with elution times for each analyte being less than 5 min. Electrospray ionization in positive-ion mode and operating in multiple reaction monitoring mode was used for quantitative analysis. Crassicauline A, fuziline, karacoline, and songorine were administered to 48 rats (n = 6 per group) orally (5 mg/kg) and intravenously (0.5 mg/kg). The standard curves demonstrated excellent linearity in the range of 1-2500 ng/mL, wherein all r values were greater than 0.99. The UPLC-MS/MS method for the determination of crassicauline A, fuziline, karacoline, and songorine in rat plasma was successfully applied in determining their pharmacokinetics parameters, from which their oral bioavailabilities were calculated to be 18.7%, 4.3%, 6.0%, and 8.4%, respectively.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacocinética , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Metanol
6.
Ecotoxicol Environ Saf ; 266: 115543, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827095

RESUMEN

As the mechanism of paraquat (PQ) poisoning is still not fully elucidated, and no specific treatment has been developed in medical practice, the management of PQ poisoning continues to present a medical challenge. In this study, the objective was to investigate the early metabolic changes in serum metabolism and identify the key metabolic pathways involved in patients with PQ poisoning. Quantitative analysis was conducted to determine the relevant metabolites. Additionally, experiments were carried out in both plasma and cell to elucidate the mechanisms underlying metabolic disorder and cell death in PQ poisoning. The study found that polyunsaturated fatty acids (PUFAs) and their metabolites, such as arachidonic acid (AA) and hydroxy eicosatetraenoic acids (HETEs), were significantly increased by non-enzymatic oxidative reaction. Reactive oxygen species (ROS) production increased rapidly at 2 h after PQ poisoning, followed by an increase in PUFAs at 12 h, and intracellular glutathione, cysteine (Cys), and Fe2+ at 24 h. However, at 36 h later, intracellular glutathione and Cys decreased, HETEs increased, and the expression of SLC7A11 and glutathione peroxidase 4 (GPX4) decreased. Ultrastructural examination revealed the absence of mitochondrial cristae. Deferoxamine was found to alleviate lipid oxidation, and increase the viability of PQ toxic cells in the low dose. In conclusion, unsaturated fatty acids metabolism was the key metabolic pathways in PQ poisoning. PQ caused cell death through the induction of ferroptosis. Inhibition of ferroptosis could be a novel strategy for the treatment of PQ poisoning.


Asunto(s)
Ferroptosis , Paraquat , Humanos , Paraquat/toxicidad , Metabolismo de los Lípidos , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo
7.
Int J Anal Chem ; 2023: 4747771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810909

RESUMEN

An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of tenacissoside G, tenacissoside H, and tenacissoside I in rat plasma. The rat plasma was treated with liquid-liquid extraction using ethyl acetate. The determination was performed on the UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 µm) with a mobile phase consisting of acetonitrile-water (containing 0.1% formic acid) and gradient elution at a flow rate of 0.4 mL/min. Electrospray (ESI) positive ion mode detection and multireaction monitoring (MRM) quantitative analysis were performed. A total of 36 rats were given tenacissoside G, tenacissoside H, and tenacissoside I, respectively, orally (5 mg/kg) and intravenously (1 mg/kg), with 6 rats in each group, to evaluate the pharmacokinetic difference of tenacissoside G, tenacissoside H, and tenacissoside I in rats. The calibration curves showed good linearity in the range of 5-2000 ng/mL, where r was greater than 0.99. The results of precision, accuracy, recovery, matrix effect, and stability met the requirements of biological sample detection methods. The established UPLC-MS/MS method was successfully applied to pharmacokinetic studies of tenacissoside G, tenacissoside H, and tenacissoside I, and the bioavailability was 22.9%, 89.8%, and 9.4%, respectively.

8.
Int J Anal Chem ; 2022: 6734408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992562

RESUMEN

In this work, a UPLC-MS/MS method was developed for the determination of gypenoside A and gypenoside XLIX in rat plasma. For chromatographic separation, a UPLC BEH C18 column was employed, the mobile phase comprised acetonitrile: water (w/0.1% formic acid), and the elution time was 4 min. Detection of each compound was enabled by electrospray ionization in negative-ion mode, and quantitative analysis was enabled by operating in multiple reaction monitoring (MRM) mode by monitoring the transitions of m/z 897.5⟶403.3 for gypenoside A, m/z 1045.5⟶118.9 for gypenoside XLIX, and m/z 825.4⟶617.5 for the internal standard. The calibration curves for gypenoside A and gypenoside XLIX demonstrated excellent linearity (r > 0.995) over the range of 2-3000 ng/mL. The intraday and interday precisions of gypenoside A and gypenoside XLIX were within 14.9%, the intraday and interday accuracies ranged from 90.1% to 113.9%, the recoveries were all greater than 88.3%, and the matrix effect ranged from 87.1% to 94.1%. The developed method was successfully applied in the determination of the pharmacokinetics of gypenoside A and gypenoside XLIX. Gypenoside A and gypenoside XLIX had very short half-lives in rats, with oral t 1/2z of 1.4 ± 0.2 h and 1.8 ± 0.6 h, respectively, and low bioavailabilities (0.90% and 0.14%, respectively).

9.
Front Psychol ; 13: 845721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814060

RESUMEN

Traditional multiple-group confirmatory factor analysis (multiple-group CFA) is usually criticized for having too restrictive model assumption, namely the scalar measurement invariance. The new multiple-group analysis methodology, alignment, has become an effective alternative. The alignment evaluates measurement invariance and more importantly, permits factor mean comparisons without requiring scalar invariance which is usually required in traditional multiple-group CFA. Some simulation studies and empirical studies have investigated the applicability of alignment under different conditions, but some areas remain unexplored. Based on the simulation studies of Asparouhov and Muthén and of Flake and McCoach, this current simulation study is broken into two sections. The first study investigates the minimal group sizes required for alignment in three-factor models. The second study compares the performance of multiple-group CFA, multiple-group exploratory structural equation model (multiple-group ESEM), and alignment by including different proportions and magnitudes of cross-loadings in the models. Study 1 shows that when the model has no noninvariant parameters, the alignment requires relatively lower group sizes. Explicitly, the minimal group size required for alignment was 250 when the amount of groups was three, the minimal group size was 150 when the amount of groups was nine, and 200 when the amount of groups was 15. When there are noninvariant parameters in the model and the amount of groups is low, a group size of 350 is a safe rule of thumb. When there are noninvariant parameters in the model and the amount of groups is high, a group size of 250 is required for trustworthy results. The magnitude of noninvariance and the noninvariance rate do not affect the minimal group size required for alignment. Study 2 shows that multiple-group CFA provides accurate factor mean estimates when each factor had 20% factor loading (1 factor loading) with small-sized cross-loading. Multiple-group ESEM provides accurate factor mean estimates when the magnitude of cross-loading is small or when each factor had 20% factor loading (1 factor loading) with medium-sized cross-loading. Alignment provides accurate factor mean estimates when there are only small-sized cross-loadings in the model. The parameter estimates, coverage rates and ratios of average standard error to standard deviation for each methodology are not influenced by the amount of groups. Recommendations are concluded for using multiple-group CFA, multiple-group ESEM, traditional alignment and aligned ESEM (AESEM) based on the results. Multiple-group CFA is more suitable for use when scalar invariance is established. Multiple-group ESEM works best when there are small-sized or only a few medium-sized cross-loadings in the model. Traditional alignment allows for small-sized cross-loadings and a few noninvariant parameters in the model. AESEM integrates the advantages of alignment and ESEM, can provide accurate estimates when noninvariant parameters and cross-loadings both exist in the model. Compared to multiple-group CFA, multiple-group ESEM, the alignment methodology performs well in more situations.

10.
Int J Anal Chem ; 2022: 3401355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432545

RESUMEN

An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of senegenin and tenuifolin in mouse blood was developed. The pharmacokinetics of senegenin and tenuifolin in mice after intravenous (5 mg/kg) and oral (60 mg/kg) administration were studied, and the absolute bioavailability was calculated. A CORTECS T3 column was used, with a column temperature set at 40°C. The mobile phase was acetonitrile and 0.1% formic acid. Gradient elution was adopted, using a flow rate of 0.4 mL/min and an elution time of 4 min. Quantitative analysis was performed using electrospray ionization (ESI) with multiple reaction monitoring (MRM) in negative ion mode. Institute of Cancer Research (ICR) mice were bled from the tail vein after intravenous or oral administration of senegenin and tenuifolin. A UPLC-MS/MS method was established to determine the blood concentrations of each drug in mice, and the noncompartmental model was used to fit the pharmacokinetic parameters. Senegenin and tenuifolin showed a good linear relationship (r > 0.995) within a concentration range of 5-400 ng/mL in mouse blood. The intraday precision was <12%, the interday precision was <14%, and the accuracy was 87-109%. The recovery was >88%, and the matrix effect was 87-94%. The oral bioavailability of senegenin and tenuifolin in mice was 8.7% and 4.0%, respectively. The established UPLC-MS/MS method is suitable for pharmacokinetic studies of senegenin and tenuifolin in mice.


Asunto(s)
Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Ionización de Electrospray , Sangre/metabolismo , Saponinas/metabolismo , Saponinas/farmacocinética
11.
Int J Anal Chem ; 2022: 1838645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321047

RESUMEN

This study established an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to study the pharmacokinetics of four antiepileptic drugs, lamotrigine, oxcarbazepine, lacosamide, and topiramate, in rats after oral administration. The gradient elution was performed on a UPLC HSS T3 (2.1 mm × 100 mm, 1.8 µm) column with acetonitrile-0.1% formic acid as the mobile phase at a flow rate of 0.4 mL/min. Protein precipitation by acetonitrile was adopted for plasma sample pretreatment. Electrospray- (ESI-) positive/negative ion switching and multiple reaction monitoring (MRM) modes were adopted for ion quantitative determination of antiepileptic drugs. UPLC-MS/MS detection and Drug and Statistics (DAS) software fitting were performed to blood samples collected from rats after oral administration of lamotrigine, oxcarbazepine, lacosamide, and topiramate (5 mg/kg). All drugs examined showed linearity within 5-5000 ng/ml (R 2 > 0.9987), the intraday accuracy was within 92%-108%, and the interday accuracy was within 93%-109%. The relative standard deviations (RSD) of intraday and interday were less than 15%. The matrix effect was within 91%-105%, and the recovery was better than 88%. The established UPLC-MS/MS method was successfully applied to the pharmacokinetic study of lamotrigine, oxcarbazepine, lacosamide, and topiramate in rats.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34225245

RESUMEN

Yunaconitine and indaconitine are active ingredients from the rhizomes of Aconitum plants. In this study, an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed to measure the concentrations of the yunaconitine and indaconitine in mouse blood, and the method was applied in measuring the pharmacokinetics of the two alkaloids after oral and intravenous administration. A UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 µm particle size) was used for chromatographic separation by gradient elution using acetonitrile-water (0.1% formic acid) as the mobile phase at a flow rate of 0.4 mL/min. Multiple reaction monitoring (MRM) mode and electrospray ionization (ESI) (positive-ion mode) were used to monitor the transitions of each analyte by tandem mass spectrometry for quantitative analysis. Yunaconitine and indaconitine were administered to the mice orally at 2 mg/kg and intravenously at 0.05 mg/kg. Blood was collected at various time intervals, and the blood samples were processed after collection and analyzed by UPLC-MS/MS. The standard curve generated for each analyte was linear over the concentration range of 0.5-500 ng/mL. The intra-day and inter-day accuracy of yunaconitine and indaconitine were 90%-103% and 86%-106%, respectively, and the precision (RSD, %) was less than 15% for both intra-day and inter-day measurements. The matrix effect ranged from 96% to 109%, and the recovery was higher than 72%. The UPLC-MS/MS method developed herein was successfully applied to measuring the pharmacokinetic parameters of yunaconitine and indaconitine in mice after intravenous and oral administration. The bioavailability of yunaconitine and indaconitine were 27.4% and 25.8%, respectively.


Asunto(s)
Aconitina/análogos & derivados , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Aconitina/sangre , Aconitina/química , Aconitina/farmacocinética , Aconitum/química , Animales , Disponibilidad Biológica , Límite de Detección , Modelos Lineales , Masculino , Ratones , Reproducibilidad de los Resultados
13.
Biomed Res Int ; 2021: 6679082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195278

RESUMEN

The aim of our study was to investigate the effects of single-dose Ougan (Citrus reticulata cv. Suavissima) juice application on the pharmacokinetics of erlotinib in vivo. Twelve Sprague-Dawley rats were randomly divided into the Ougan juice and control groups (n = 6 each). The rats were given a single dose of 1 mL/100 g Ougan juice or 1 mL/100 g normal saline (NS) by intragastric administration, followed by a single oral administration of 20 mg/kg erlotinib. The plasma concentration of erlotinib in rats was determined using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Erlotinib-d6 was used as the internal standard for chromatographic analysis on the UPLC BEH C18 analysis column (2.1 mm × 50 mm, 1.7 µm). The mobile phase was composed of acetonitrile and 0.1% formic acid eluting by gradient. Different pharmacokinetic (PK) parameters of erlotinib were calculated. The Ougan juice promoted the absorption of erlotinib and reduced the clearance of the drug. The area under the curve of erlotinib in the single-dose Ougan juice pretreatment group was approximately 1.87 times higher, and the maximum blood concentration (Cmax) was approximately 1.34 times higher than that in the control group. The mean residence time of erlotinib in the Ougan juice group was larger, and the clearance rate was smaller than those in the control group; the difference was statistically significant (P < 0.05). Ougan juice affected the PK spectrum of erlotinib in rats by improving the bioavailability of the drug and significantly increasing its plasma concentration.


Asunto(s)
Citrus/metabolismo , Clorhidrato de Erlotinib/farmacocinética , Jugos de Frutas y Vegetales , Animales , Cromatografía Liquida , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Clorhidrato de Erlotinib/sangre , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Estómago/efectos de los fármacos , Espectrometría de Masas en Tándem
14.
Drug Des Devel Ther ; 15: 2171-2178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079220

RESUMEN

BACKGROUND AND AIM: Dasatinib is approved for the treatment of leukaemia worldwide. Triazole agents such as posaconazole may be used for the control of secondary fungal infection with leukaemia. This work aimed to develop a bioanalytical method to study the potential interaction between dasatinib and posaconazole. METHODS: An ultrahigh-performance liquid chromatography-tandem mass spectrometry method was established to measure the plasma concentrations of dasatinib and posaconazole in rats simultaneously. Simple protein precipitation with acetonitrile was applied to extract dasatinib and posaconazole in samples. The chromatographic separation of analytes was conducted on an UPLC BEH C18 column using a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile. Dasatinib and posaconazole were monitored in positive ion mode with the following mass transition pairs: m/z 488.2→401.1 for dasatinib and m/z 701.3→683.4 for posaconazole. The method was successfully applied for pharmacokinetic interaction between dasatinib and posaconazole. RESULTS: The established method expressed good linearity in 1-1000 ng/mL of dasatinib and 5-5000 ng/mL of posaconazole, with limit of detection was 1 ng/mL and 5 ng/mL, respectively. Methodology validations, including accuracy, precision, matrix effect, recovery, and stability, met the US Food and Drug Administration (FDA) acceptance criteria for bioanalytical method validation. Dasatinib strongly inhibited the clearance of posaconazole in vivo, while posaconazole expressed no significant effect on the pharmacokinetics of dasatinib. CONCLUSION: Dasatinib alters the pharmacokinetics of posaconazole. Attention should be paid to the unexpected risk of adverse clinical outcomes when posaconazole is co-administered with dasatinib.


Asunto(s)
Dasatinib/farmacocinética , Triazoles/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Dasatinib/química , Diseño de Equipo , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Triazoles/química
15.
Alcohol ; 96: 55-61, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33549609

RESUMEN

BACKGROUND: Alcohol abuse has become a serious health issue worldwide. Ketamine can reduce addiction risk among patients with alcohol use disorders. This study aimed to determine the effects of alcohol on the pharmacokinetics of ketamine during long-term alcohol exposure. METHOD: An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of ketamine and norketamine was developed and validated. A total of 15 rats were given 40% alcohol for 3 weeks. The pharmacokinetics of ketamine were measured at time zero, 1 week, 2 weeks, and 3 weeks after alcohol exposure. The metabolic capability of liver CYP450 was evaluated using three probe drugs: metoprolol, phenacetin, and tolbutamide. RESULTS: During drinking of 40% alcohol, the AUC(0-t), AUC(0-∞), and Cmax of ketamine and norketamine significantly increased, while V and CL significantly decreased with time (p < 0.001). The pharmacokinetic changes of norketamine were highly consistent with ketamine. Additionally, the concentration ratio of norketamine/ketamine in sample time also decreased over time. However, there were no pharmacokinetic changes of three probe drugs, which indicated there was no significant change of liver CYPs activities. CONCLUSION: Alcohol significantly increases plasma concentration of ketamine and norketamine. The effect of alcohol on pharmacokinetics of ketamine should be considered in clinical therapy.


Asunto(s)
Alcoholismo , Ketamina , Animales , Cromatografía Liquida , Humanos , Ketamina/análogos & derivados , Ratas , Espectrometría de Masas en Tándem
16.
Artículo en Inglés | MEDLINE | ID: mdl-33388525

RESUMEN

D-pinitol could be a potential therapeutic agent for the treatment of diabetes mellitus (DM) type II. In this work, a sensitive and rapid ultra performance liquid chromatography coupled with tandem mass spectrometry method was firstly developed and validated for the determination and pharmacokinetic study of D-pinitol in rat plasma. D-pinitol and 5,7-dihydroxychromone (Internal Standard, IS) were completely separated on a BEH C18 column. The plasma samples were deproteinated with acetonitrile: ethanol (1:1). The MRM transitions for D-pinitol was m/z 179.125 â†’ 105.049, and for IS was m/z 195.085 â†’ 109.031. The method linearity ranges was 5-200 ng/mL. The precision, accuracy, recovery, matrix effect, stability under different conditions, were all within the required criteria. After intragastric (50 mg/kg) administration of D-pinitol to the rats, the maximum plasma concentration (Cmax) was 77.8 ± 19.5 ng/mL. The time to reach the maximum plasma concentration (Tmax) was 2.2 ± 0.98 h. Apparent distribution volume (Vz) was 1557.5 ± 1329.1 L/kg and the plasma centration time curve (AUC0-t) was 1265.5 ± 479.3 µg/L*h. After intravenous (5.0 mg/kg) administration, Vz was 325.2 ± 107.8 L/kg and AUC(0-t) was 693.0 ± 89.9 µg/L*h. Our study indicated D-pinitol had a slow elimination phase and might be the high affinity binding to blood protein in vivo, which are helpful for its further drug development and clinical application.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Inositol/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Animales , Disponibilidad Biológica , Inositol/sangre , Límite de Detección , Modelos Lineales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
17.
IEEE Trans Vis Comput Graph ; 27(10): 3926-3937, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32406841

RESUMEN

To better address the deformation and structural variation challenges inherently present in 3D shapes, researchers have shifted their focus from designing handcrafted point descriptors to learning point descriptors and their correspondences in a data-driven manner. Recent studies have developed deep neural networks for robust point descriptor and shape correspondence learning in consideration of local structural information. In this article, we developed a novel shape correspondence learning network, called TC-NET, which further enhances performance by encouraging the topological consistency between the embedding feature space and the input shape space. Specifically, in this article, we first calculate the topology-associated edge weights to represent the topological structure of each point. Then, in order to preserve this topological structure in high-dimensional feature space, a structural regularization term is defined to minimize the topology-consistent feature reconstruction loss (Topo-Loss) during the correspondence learning process. Our proposed method achieved state-of-the-art performance on three shape correspondence benchmark datasets. In addition, the proposed topology preservation concept can be easily generalized to other learning-based shape analysis tasks to regularize the topological structure of high-dimensional feature spaces.

18.
Bioorg Chem ; 106: 104503, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280834

RESUMEN

Subtype-selective drugs are of great therapeutic importance as they are expected to be more effective and with less side-effects. However, discovery of subtype selective inhibitors was hampered by the high similarity of the binding sites within subfamilies. In this study, we further evaluated the applicability of "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)" for the identification of subtype-selective inhibitors. A case study was performed on monoamine oxidase, which has two subtypes related to distinct diseases. The inhibitory activity against MAO-A/B of 347 compounds experimentally tested in this research was reported. Compound M124 (5H-thiazolo[3,2-a]pyrimidin-5-one) with IC50 less than 100 nM (SI = 23) was selected as a probe to investigate the structure selectivity relationship. Similarity search led to the identification of compound M229 and M249 with IC50 values of 7.4 nM, 4 nM and acceptable selectivity index over MAO-A (M229 SI > 1351, M249 SI > 2500). The molecular basis for subtype selectivity was explored through docking study and attention based DNN model. Additionally, in silico ADME properties were characterized. Accordingly, it is found that BRS-3D is a robust method for subtype selectivity in the early stage of drug discovery and the compounds reported here can be promising leads for further experimental analysis.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Máquina de Vectores de Soporte , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
19.
Biomed Res Int ; 2020: 8247270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733957

RESUMEN

Gelsemium elegans (Gardn. & Champ.) Benth. is a plant belonging to the genus Gelsemium (family Gelsemiaceae), and its main components are alkaloids. It is a Chinese traditional medicinal plant and notoriously known as a highly toxic medicine. However, a method has not yet been found for the simultaneous detection of 11 Gelsemium alkaloids in rat plasma, and the toxicokinetics of 11 Gelsemium alkaloids after intravenous administration has not been reported. In this work, we have developed a sensitive and rapid method of ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) for the detection of 11 Gelsemium alkaloids in rat plasma. The toxicokinetic behavior was also investigated, so as to provide a reference of the scientific properties of Gelsemium elegans and improve the efficacy and safety of drugs. Sixty-six Sprague-Dawley rats were randomly divided into 11 groups, six rats in each group. Each group was intravenously given one alkaloid (0.1 mg/kg), respectively. A Waters UPLC BEH C18 column (50 mm × 2.1 mm, 1.7 µm) was used for chromatographic separation. Methanol and water (containing 0.1% formic acid) were used for the mobile phase with gradient elution. Multiple reactions were monitored, and positive electrospray ionization was used for quantitative analysis. The precision was less than 16%, and the accuracy was between 86.9% and 113.2%. The extraction efficiency was better than 75.8%, and the matrix effects ranged from 88.5% to 107.8%. The calibration curves were in the range of 0.1-200 ng/mL, with a correlation coefficient (R 2) greater than 0.995. The UPLC-MS/MS method was successfully applied to the toxicokinetics of 11 Gelsemium alkaloids in rats after intravenous administration (0.1 mg/kg for each alkaloid). The results of the toxicokinetics provide a basis for the pharmacology and toxicology of Gelsemium alkaloids and scientific evidence for the clinical use of Gelsemium alkaloids.


Asunto(s)
Alcaloides/farmacocinética , Alcaloides/toxicidad , Gelsemium/química , Espectrometría de Masas en Tándem , Administración Intravenosa , Alcaloides/sangre , Alcaloides/química , Animales , Cromatografía Líquida de Alta Presión , Masculino , Extractos Vegetales/química , Ratas Sprague-Dawley , Análisis de Regresión , Reproducibilidad de los Resultados
20.
Chem Biol Interact ; 329: 109147, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32738202

RESUMEN

Acacetin is a natural flavonoid that is widely distributed in plants and possesses numerous pharmacological activities. The aim of the present study was to investigate the effects of acacetin on the activities of the cytochrome P450 family members CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1, and CYP3A2 in rat liver microsomes in vitro and rats in vivo to evaluate potential herb-drug interactions by using a cocktail approach. Phenacetin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and midazolam were chosen as the probe substrates. An ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous detection of the probe substrates and their metabolites. In vitro, the mode of acacetin inhibition of CYP2B1, CYP2C11, and CYP2E1 was competitive, while mixed inhibition was observed for CYP1A2 and CYP3A2. The Ki values in this study were less than 8.32 µM. In vivo, the mixed probe substrates were administered by gavage after daily intraperitoneal injection with 50 mg/kg acacetin or saline for 2 weeks. The main pharmacokinetic parameters, area under the plasma concentration-time curve (AUC), plasma clearance (CL), and maximum plasma concentration (Cmax) of the probe substrates were significantly different in the experimental group than in the control group. Overall, the in vitro and in vivo results indicated that acacetin would be at high risk to cause toxicity and drug interactions via cytochrome P450 inhibition.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Flavonas/metabolismo , Animales , Área Bajo la Curva , Sistema Enzimático del Citocromo P-450/química , Flavonas/química , Flavonas/farmacocinética , Semivida , Concentración 50 Inhibidora , Cinética , Masculino , Microsomas Hepáticos/metabolismo , Curva ROC , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...