RESUMEN
Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Masculino , Femenino , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Anciano , Encéfalo/patología , Imagen por Resonancia Magnética , Lóbulo Temporal/patología , Anciano de 80 o más Años , Apolipoproteína E4/genética , Persona de Mediana EdadRESUMEN
BACKGROUND: Brain ageing is highly heterogeneous, as it is driven by a variety of normal and neuropathological processes. These processes may differentially affect structural and functional brain ageing across individuals, with more pronounced ageing (older brain age) during midlife being indicative of later development of dementia. Here, we examined whether brain-ageing heterogeneity in unimpaired older adults related to neurodegeneration, different cognitive trajectories, genetic and amyloid-beta (Aß) profiles, and to predicted progression to Alzheimer's disease (AD). METHODS: Functional and structural brain age measures were obtained for resting-state functional MRI and structural MRI, respectively, in 3460 cognitively normal individuals across an age range spanning 42-85 years. Participants were categorised into four groups based on the difference between their chronological and predicted age in each modality: advanced age in both (n = 291), resilient in both (n = 260) or advanced in one/resilient in the other (n = 163/153). With the resilient group as the reference, brain-age groups were compared across neuroimaging features of neuropathology (white matter hyperintensity volume, neuronal loss measured with Neurite Orientation Dispersion and Density Imaging, AD-specific atrophy patterns measured with the Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease index, amyloid burden using amyloid positron emission tomography (PET), progression to mild cognitive impairment and baseline and longitudinal cognitive measures (trail making task, mini mental state examination, digit symbol substitution task). FINDINGS: Individuals with advanced structural and functional brain-ages had more features indicative of neurodegeneration and they had poor cognition. Individuals with a resilient brain-age in both modalities had a genetic variant that has been shown to be associated with age of onset of AD. Mixed brain-age was associated with selective cognitive deficits. INTERPRETATION: The advanced group displayed evidence of increased atrophy across all neuroimaging features that was not found in either of the mixed groups. This is in line with biomarkers of preclinical AD and cerebrovascular disease. These findings suggest that the variation in structural and functional brain ageing across individuals reflects the degree of underlying neuropathological processes and may indicate the propensity to develop dementia in later life. FUNDING: The National Institute on Aging, the National Institutes of Health, the Swiss National Science Foundation, the Kaiser Foundation Research Institute and the National Heart, Lung, and Blood Institute.
RESUMEN
Morphometricity examines the global statistical association between brain morphology and an observable trait, and is defined as the proportion of the trait variation attributable to brain morphology. In this work, we propose an accurate morphometricity estimator based on the generalized random effects (GRE) model, and perform morphometricity analyses on five cognitive traits in an Alzheimer's study. Our empirical study shows that the proposed GRE model outperforms the widely used LME model on both simulation and real data. In addition, we extend morphometricity estimation from the whole brain to the focal-brain level, and examine and quantify both global and regional neuroanatomical signatures of the cognitive traits. Our global analysis reveals 1) a relatively strong anatomical basis for ADAS13, 2) intermediate ones for MMSE, CDRSB and FAQ, and 3) a relatively weak one for RAVLT.learning. The top associations identified from our regional morphometricity analysis include those between all five cognitive traits and multiple regions such as hippocampus, amygdala, and inferior lateral ventricles. As expected, the identified regional associations are weaker than the global ones. While the whole brain analysis is more powerful in identifying higher morphometricity, the regional analysis could localize the neuroanatomical signatures of the studied cognitive traits and thus provide valuable information in imaging and cognitive biomarker discovery for normal and/or disordered brain research.
RESUMEN
INTRODUCTION: Plasma proteomic analyses of unique brain atrophy patterns may illuminate peripheral drivers of neurodegeneration and identify novel biomarkers for predicting clinically relevant outcomes. METHODS: We identified proteomic signatures associated with machine learning-derived aging- and Alzheimer's disease (AD) -related brain atrophy patterns in the Baltimore Longitudinal Study of Aging (n = 815). Using data from five cohorts, we examined whether candidate proteins were associated with AD endophenotypes and long-term dementia risk. RESULTS: Plasma proteins associated with distinct patterns of age- and AD-related atrophy were also associated with plasma/cerebrospinal fluid (CSF) AD biomarkers, cognition, AD risk, as well as mid-life (20-year) and late-life (8-year) dementia risk. EFEMP1 and CXCL12 showed the most consistent associations across cohorts and were mechanistically implicated as determinants of brain structure using genetic methods, including Mendelian randomization. DISCUSSION: Our findings reveal plasma proteomic signatures of unique aging- and AD-related brain atrophy patterns and implicate EFEMP1 and CXCL12 as important molecular drivers of neurodegeneration. HIGHLIGHTS: Plasma proteomic signatures are associated with unique patterns of brain atrophy. Brain atrophy-related proteins predict clinically relevant outcomes across cohorts. Genetic variation underlying plasma EFEMP1 and CXCL12 influences brain structure. EFEMP1 and CXCL12 may be important molecular drivers of neurodegeneration.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Encéfalo , Quimiocina CXCL12 , Proteínas de la Matriz Extracelular , Proteómica , Humanos , Biomarcadores/sangre , Quimiocina CXCL12/sangre , Femenino , Masculino , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Estudios Longitudinales , Encéfalo/patología , Proteínas de la Matriz Extracelular/sangre , Envejecimiento , Atrofia/patología , Anciano de 80 o más Años , Persona de Mediana Edad , Estudios de CohortesRESUMEN
Brain aging process is influenced by various lifestyle, environmental and genetic factors, as well as by age-related and often coexisting pathologies. Magnetic resonance imaging and artificial intelligence methods have been instrumental in understanding neuroanatomical changes that occur during aging. Large, diverse population studies enable identifying comprehensive and representative brain change patterns resulting from distinct but overlapping pathological and biological factors, revealing intersections and heterogeneity in affected brain regions and clinical phenotypes. Herein, we leverage a state-of-the-art deep-representation learning method, Surreal-GAN, and present methodological advances and extensive experimental results elucidating brain aging heterogeneity in a cohort of 49,482 individuals from 11 studies. Five dominant patterns of brain atrophy were identified and quantified for each individual by respective measures, R-indices. Their associations with biomedical, lifestyle and genetic factors provide insights into the etiology of observed variances, suggesting their potential as brain endophenotypes for genetic and lifestyle risks. Furthermore, baseline R-indices predict disease progression and mortality, capturing early changes as supplementary prognostic markers. These R-indices establish a dimensional approach to measuring aging trajectories and related brain changes. They hold promise for precise diagnostics, especially at preclinical stages, facilitating personalized patient management and targeted clinical trial recruitment based on specific brain endophenotypic expression and prognosis.
Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Envejecimiento/patología , Masculino , Femenino , Anciano , Estudios de Cohortes , Persona de Mediana Edad , Atrofia/patología , Estilo de Vida , Adulto , Anciano de 80 o más AñosRESUMEN
Objectives: Cerebral blood flow (CBF) measured by arterial spin labeling (ASL) is a promising biomarker for Alzheimer's Disease (AD). ASL data from multiple vendors were included in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. However, the M0 images were missing in Siemens ASL data, prohibiting CBF quantification. Here, we utilized a generative diffusion model to impute the missing M0 and validated generated CBF data with acquired data from GE. Methods: A conditional latent diffusion model was trained to generate the M0 image and validate it on an in-house dataset (N=55) based on image similarity metrics, accuracy of CBF quantification, and consistency with the physical model. This model was then applied to the ADNI dataset (Siemens: N=211) to impute the missing M0 for CBF calculation. We further compared the imputed data (Siemens) and acquired data (GE) regarding regional CBF differences by AD stages, their classification accuracy for AD prediction, and CBF trajectory slopes estimated by a mixed effect model. Results: The trained diffusion model generated the M0 image with high fidelity (Structural similarity index, SSIM=0.924±0.019; peak signal-to-noise ratio, PSNR=33.348±1.831) and caused minimal bias in CBF values (mean difference in whole brain is 1.07±2.12ml/100g/min). Both generated and acquired CBF data showed similar differentiation patterns by AD stages, similar classification performance, and decreasing slopes with AD progression in specific AD-related regions. Generated CBF data also improved accuracy in classifying AD stages compared to qualitative perfusion data. Interpretation/Conclusion: This study shows the potential of diffusion models for imputing missing modalities for large-scale studies of CBF variation with AD.
RESUMEN
Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Humanos , Biomarcadores/metabolismo , Genómica/métodos , Investigación Biomédica/métodos , MultiómicaRESUMEN
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.
Asunto(s)
Envejecimiento , Humanos , Envejecimiento/genética , Envejecimiento/fisiología , Estudio de Asociación del Genoma Completo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Reino Unido , Fenotipo , Especificidad de ÓrganosRESUMEN
Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Humanos , Análisis por Conglomerados , Anciano , Femenino , Análisis de Supervivencia , Masculino , AlgoritmosRESUMEN
Recent advances in cytometry technology have enabled high-throughput data collection with multiple single-cell protein expression measurements. The significant biological and technical variance between samples in cytometry has long posed a formidable challenge during the gating process, especially for the initial gates which deal with unpredictable events, such as debris and technical artifacts. Even with the same experimental machine and protocol, the target population, as well as the cell population that needs to be excluded, may vary across different measurements. To address this challenge and mitigate the labor-intensive manual gating process, we propose a deep learning framework UNITO to rigorously identify the hierarchical cytometric subpopulations. The UNITO framework transformed a cell-level classification task into an image-based semantic segmentation problem. For reproducibility purposes, the framework was applied to three independent cohorts and successfully detected initial gates that were required to identify single cellular events as well as subsequent cell gates. We validated the UNITO framework by comparing its results with previous automated methods and the consensus of at least four experienced immunologists. UNITO outperformed existing automated methods and differed from human consensus by no more than each individual human. Most critically, UNITO framework functions as a fully automated pipeline after training and does not require human hints or prior knowledge. Unlike existing multi-channel classification or clustering pipelines, UNITO can reproduce a similar contour compared to manual gating for each intermediate gating to achieve better interpretability and provide post hoc visual inspection. Beyond acting as a pioneering framework that uses image segmentation to do auto-gating, UNITO gives a fast and interpretable way to assign the cell subtype membership, and the speed of UNITO will not be impacted by the number of cells from each sample. The pre-gating and gating inference takes approximately 2 minutes for each sample using our pre-defined 9 gates system, and it can also adapt to any sequential prediction with different configurations.
RESUMEN
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes with different brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal magnetic resonance imaging to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, and multiple sclerosis, as well as their potential in a transdiagnostic framework, where neuroanatomical and neurobiological commonalities were assessed across diagnostic boundaries. Subsequently, we summarize relevant machine learning methodologies and their clinical interpretability. We discuss the potential clinical implications of the current findings and envision future research avenues. Finally, we discuss an emerging paradigm called dimensional neuroimaging endophenotypes. Dimensional neuroimaging endophenotypes dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into low-dimensional yet informative, quantitative brain phenotypic representations, serving as robust intermediate phenotypes (i.e., endophenotypes), presumably reflecting the interplay of underlying genetic, lifestyle, and environmental processes associated with disease etiology.
Asunto(s)
Encéfalo , Endofenotipos , Aprendizaje Automático , Neuroimagen , Humanos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/fisiopatología , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/fisiopatología , Imagen por Resonancia Magnética/métodosRESUMEN
Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning-driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D segmentation models of GTV based on deep learning are limited by the loss of spatial features and anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred boundaries, and background interference. All these factors seriously affect the segmentation performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model based on 2D-3D architecture has been proposed in this study, in which three strategies are introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi-branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and channels according to their different tumor information, and then to highlight slices and channels with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer technical support for precision medicine.
RESUMEN
Analyzing and obtaining useful information is challenging when facing a new complex system. Traditional methods often focus on specific structural aspects, such as communities, which may overlook the important features and result in biased conclusions. To address this, this article suggests an adaptive algorithm for exploring complex system structures using a generative model. This method calculates and optimizes node parameters, which can reflect the latent structural characteristics of the complex system. The effectiveness and stability of this method have been demonstrated in comparative experiments on 10 sets of benchmark networks using our model parameter configuration scheme. To enhance adaptability, algorithm fusion strategies were also proposed and tested on two real-world networks. The results indicate that the algorithm can uncover multiple structural features, including clustering, overlapping, and local chaining. This adaptive algorithm provides a promising approach for exploring complex system structures.
RESUMEN
The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .
Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Humanos , Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/fisiología , Análisis de la Aleatorización MendelianaRESUMEN
Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50â¯000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27â¯402 individuals (mean [SD] age, 63.0 [8.3] years; 15â¯146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.
Asunto(s)
Envejecimiento , Encéfalo , Humanos , Anciano , Femenino , Masculino , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Envejecimiento/genética , Envejecimiento/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios de Cohortes , Aprendizaje ProfundoRESUMEN
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes that present significant differences in various brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, multiple sclerosis, as well as their potential in transdiagnostic settings. Subsequently, we summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE). DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low-dimensional yet informative, quantitative brain phenotypic representation, serving as a robust intermediate phenotype (i.e., endophenotype) largely reflecting underlying genetics and etiology. Finally, we discuss the potential clinical implications of the current findings and envision future research avenues.
RESUMEN
Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.
Asunto(s)
Enfermedad de Alzheimer , Neuroimagen , Humanos , Endofenotipos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Análisis por ConglomeradosRESUMEN
Understanding the genetic basis of biological aging in multi-organ systems is vital for elucidating age-related disease mechanisms and identifying therapeutic interventions. This study characterized the genetic architecture of the biological age gap (BAG) across nine human organ systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 genomic loci-BAG pairs (P-value<5×10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ specificity and inter-organ connections. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system while exerting pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 - the genetic correlation between BAGs mirrors their phenotypic correlation. A causal network revealed potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of multiple organ systems. Our findings shed light on promising therapeutic interventions to enhance human organ health within a complex multi-organ network, including lifestyle modifications and potential drug repositioning strategies for treating chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine.
RESUMEN
Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Genómica , Neoplasias Encefálicas/patologíaRESUMEN
Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to dissect this heterogeneity by identifying complex intermediate phenotypes - herein called dimensional neuroimaging endophenotypes (DNEs) - which subtype various neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×1-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores significantly improved the prediction accuracy for 14 systemic disease categories and mortality. These findings underscore the potential of the nine DNEs to identify individuals at a high risk of developing the four brain diseases during preclinical stages for precision diagnostics. All results are publicly available at: http://labs.loni.usc.edu/medicine/.