Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Breed ; 44(2): 15, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38362529

RESUMEN

Yield and quality are two crucial breeding objects of wheat therein grain weight and grain protein content (GPC) are two key relevant factors correspondingly. Investigations of their genetic mechanisms represent special significance for breeding. In this study, 199 F2 plants and corresponding F2:3 families derived from Nongda3753 (ND3753) and its EMS-generated mutant 564 (M564) were used to investigate the genetic basis of larger grain and higher GPC of M564. QTL analysis identified a total of 33 environmentally stable QTLs related to thousand grain weight (TGW), grain area (GA), grain circle (GC), grain length (GL), grain width (GW), and GPC on chromosomes 1B, 2A, 2B, 4D, 6B, and 7D, respectively, among which QGw.cau-6B.1, QTgw.cau-6B.1, QGa.cau-6B.1, and QGc.cau-6B.1 shared overlap confidence interval on chromosome 6B. This interval contained the TaGW2 gene playing the same role as the QTLs, so TaGW2-6B was cloned and sequenced. Sequence alignment revealed two G/A SNPs between two parents, among which the SNP in the seventh exon led to a premature termination in M564. A KASP marker was developed based on the SNP, and single-marker analysis on biparental populations showed that the mutant allele could significantly increase GW and TGW, but had no effect on GPC. Distribution detection of the mutant allele through KASP marker genotyping and sequence alignment against databases ascertained that no materials harbored this allele within natural populations. This allele was subsequently introduced into three different varieties through molecular marker-assisted backcrossing, and it was revealed that the allele had a significant effect on simultaneously increasing GW, TGW, and even GPC in all of three backgrounds. Summing up the above, it could be concluded that a novel elite allele of TaGW2-6B was artificially created and might play an important role in wheat breeding for high yield and quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01455-y.

2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047084

RESUMEN

Owing to the high anthocyanin content, broccoli varieties with purple curds have become more popular in food inventories, while the genetic mechanisms of anthocyanin biosynthesis pathways remain largely unknown. We bred a pair of near-isogenic lines (NILs), GB767 and PB767, whose curds exhibited green and purple colors, respectively, due to the purple sepals of florets. RNA sequencing and widely targeted metabolic analyses were conducted. Compared with GB767, eighteen anthocyanin biosynthesis-related genes exhibited significantly higher expressions in PB767, and in turn, the expression level of BolMYBL2.1 was attenuated. A comparison of the metabolites in the flavonoid biosynthetic pathways revealed 142 differentially accumulated metabolites, among which higher content of anthocyanins was responsible for the purple color of PB767. Interestingly, the total cyanidin contents were similar between the curds of NILs, whereas total delphinidin contents were increased by more than 170 times in purple curds, presumably due to a non-canonical F3'H/CYP75B gene, BolC02g015480.2J, with elevated expression in PB767. Furthermore, correlation analysis further confirmed that the identified nineteen DEGs were significantly correlated with seven differentially accumulated anthocyanins in PB767. Together, these results identified the metabolic factors and genes that contribute to the purplish curds, which could lay foundations for the breeding programs of purple broccoli.


Asunto(s)
Antocianinas , Brassica , Transcriptoma , Brassica/genética , Brassica/metabolismo , Fitomejoramiento , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas , Color , Perfilación de la Expresión Génica
3.
Plant Methods ; 18(1): 81, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690826

RESUMEN

BACKGROUND: Variety genuineness and purity are essential indices of maize seed quality that affect yield. However, detection methods for variety genuineness are time-consuming, expensive, require extensive training, or destroy the seeds in the process. Here, we present an accurate, high-throughput, cost-effective, and non-destructive method for screening variety genuineness that uses seed phenotype data with machine learning to distinguish between genetically and phenotypically similar seed varieties. Specifically, we obtained image data of seed morphology and hyperspectral reflectance for Jingke 968 and nine other closely-related varieties (non-Jingke 968). We then compared the robustness of three common machine learning algorithms in distinguishing these varieties based on the phenotypic imaging data. RESULTS: Our results showed that hyperspectral imaging (HSI) combined with a multilayer perceptron (MLP) or support vector machine (SVM) model could distinguish Jingke 968 from varieties that differed by as few as two loci, with a 99% or higher accuracy, while machine vision imaging provided ~ 90% accuracy. Through model validation and updating with varieties not included in the training data, we developed a genuineness detection model for Jingke 968 that effectively discriminated between genetically similar and distant varieties. CONCLUSIONS: This strategy has potential for wide adoption in large-scale variety genuineness detection operations for internal quality control or governmental regulatory agencies, or for accelerating the breeding of new varieties. Besides, it could easily be extended to other target varieties and other crops.

4.
Front Plant Sci ; 12: 747775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950162

RESUMEN

Sodium dodecyl sulfate-sedimentation volume is an important index to evaluate the gluten strength of common wheat and is closely related to baking quality. In this study, a total of 15 quantitative trait locus (QTL) for sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) were identified by using a high-density genetic map including 2,474 single-nucleotide polymorphism (SNP) markers, which was constructed with a doubled haploid (DH) population derived from the cross between Non-gda3753 (ND3753) and Liangxing99 (LX99). Importantly, four environmentally stable QTLs were detected on chromosomes 1A, 2D, and 5D, respectively. Among them, the one with the largest effect was identified on chromosome 1A (designated as QSsv.cau-1A.1) explaining up to 39.67% of the phenotypic variance. Subsequently, QSsv.cau-1A.1 was dissected into two QTLs named as QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 by saturating the genetic linkage map of the chromosome 1A. Interestedly, favorable alleles of these two loci were from different parents. Due to the favorable allele of QSsv.cau-1A.1.1 was from the high-value parents ND3753 and revealed higher genetic effect, which explained 25.07% of the phenotypic variation, mapping of this locus was conducted by using BC3F1 and BC3F2 populations. By comparing the CS reference sequence, the physical interval of QSsv.cau-1A.1.1 was delimited into 14.9 Mb, with 89 putative high-confidence annotated genes. SSVs of different recombinants between QSsv.cau-1A.1.1 and QSsv.cau-1A.1 detected from DH and BC3F2 populations showed that these two loci had an obvious additive effect, of which the combination of two favorable loci had the high SSV, whereas recombinants with unfavorable loci had the lowest. These results provide further insight into the genetic basis of SSV and QSsv.cau-1A.1.1 will be an ideal target for positional cloning and wheat breeding programs.

5.
Front Plant Sci ; 12: 799520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087558

RESUMEN

Wheat yield is not only affected by three components of yield, but also affected by plant height (PH). Identification and utilization of the quantitative trait loci (QTL) controlling these four traits is vitally important for breeding high-yielding wheat varieties. In this work, we conducted a QTL analysis using the recombinant inbred lines (RILs) derived from a cross between two winter wheat varieties of China, "Nongda981" (ND981) and "Nongda3097" (ND3097), exhibiting significant differences in spike number per unit area (SN), grain number per spike (GNS), thousand grain weight (TGW), and PH. A total of 11 environmentally stable QTL for these four traits were detected. Among them, four major and stable QTLs (QSn.cau-4B-1.1, QGns.cau-4B-1, QTgw.cau-4B-1.1, and QPh.cau-4B-1.2) explaining the highest phenotypic variance for SN, GNS, TGW, and PH, respectively, were mapped on the same genomic region of chromosome 4B and were considered a QTL cluster. The QTL cluster spanned a genetic distance of about 12.3 cM, corresponding to a physical distance of about 8.7 Mb. Then, the residual heterozygous line (RHL) was used for fine mapping of the QTL cluster. Finally, QSn.cau-4B-1.1, QGns.cau-4B-1, and QPh.cau-4B-1.2 were colocated to the physical interval of about 1.4 Mb containing 31 annotated high confidence genes. QTgw.cau-4B-1.1 was divided into two linked QTL with opposite effects. The elite NILs of the QTL cluster increased SN and PH by 55.71-74.82% and 14.73-23.54%, respectively, and increased GNS and TGW by 29.72-37.26% and 5.81-11.24% in two environments. Collectively, the QTL cluster for SN, GNS, TGW, and PH provides a theoretical basis for improving wheat yield, and the fine-mapping result will be beneficial for marker-assisted selection and candidate genes cloning.

6.
Theor Appl Genet ; 133(7): 2259-2269, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32347319

RESUMEN

KEY MESSAGE: An InDel marker closely linked with a major and stable quantitative trait locus (QTL) on chromosome 4BS, QSnpa.cau-4B, controlling spike number per unit area will benefit wheat yield improvement. Spike number per unit area (SNPA) is an essential yield-related trait, and analyzing its genetic basis is important for cultivar improvement in wheat (Triticum aestivum L.). In this study, we used the F2 population derived from a cross between two wheat accessions displaying significant differences in SNPA to perform quantitative trait locus (QTL) analysis. Through bulked segregant analysis, a major and stable QTL that explained 18.11-82.11% of the phenotypic variation was identified on chromosome 4BS. The QTL interval was validated using F4:5 and F6:7 families and narrowed it to a 24.91-38.36 Mb region of chromosome 4BS according to the 'Chinese Spring' reference genome sequence. In this region, variations in 16 genes caused amino acid changes and three genes were present in only one parent. Among these, we annotated a gene orthologous to TB1 in maize (Zea mays), namely TraesCS4B01G042700, which carried a 44-bp deletion in its promoter in the higher-SNPA parent. An InDel marker based on the insertion/deletion polymorphism was designed and used to diagnose the allelic distribution within a natural population. The frequency of the 44-bp deletion allele associated with higher SNPA was relatively low (13.24%), implying that this favorable allele has not been widely utilized and could be valuable for wheat yield improvement. In summary, we identified a major and stable QTL for SNPA and developed a diagnostic marker for the more-spiked trait, which will be beneficial for molecular-assisted breeding in wheat.


Asunto(s)
Cromosomas de las Plantas , Genes de Plantas , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Fenotipo , Fitomejoramiento
7.
BMC Plant Biol ; 17(1): 122, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28697758

RESUMEN

BACKGROUND: Grain protein concentration (GPC) is a major determinant of quality in barley (Hordeum vulgare L.). Breeding barley cultivars with high GPC has practical value for feed and food properties. The aim of the present study was to identify quantitative trait loci (QTLs) for GPC that could be detected under multiple environments. RESULTS: A population of 190 recombinant inbred lines (RILs) deriving from a cross between Chinese landrace ZGMLEL with high GPC (> 20%) and Australian cultivar Schooner was used for linkage and QTL analyses. The genetic linkage map spanned 2353.48 cM in length with an average locus interval of 2.33 cM. GPC was evaluated under six environments for the RIL population and the two parental lines. In total, six environmentally stable QTLs for GPC were detected on chromosomes 2H (1), 4H (1), 6H (1), and 7H (3) and the increasing alleles were derived from ZGMLEL. Notably, the three QTLs on chromosome 7H (QGpc.ZiSc-7H.1, QGpc.ZiSc-7H.2, and QGpc.ZiSc-7H.3) that linked in coupling phase were firstly identified. Moreover, the genetic effects of stable QTLs on chromosomes 2H, 6H and 7H were validated using near isogenic lines (NILs). CONCLUSIONS: Collectively, the identified QTLs expanded our knowledge about the genetic basis of GPC in barley and could be selected to develop cultivars with high grain protein concentration.


Asunto(s)
Cromosomas de las Plantas , Grano Comestible/genética , Hordeum/genética , Proteínas de Plantas/genética , Mapeo Cromosómico , Repeticiones de Microsatélite , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA