Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200470, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34839704

RESUMEN

Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling. Using Escherichia coli, prophage λ and the multidrug-resistant plasmid RP4 we find that prophages can substantially limit the spread of conjugative plasmids. This inhibitory effect was strongly dependent on environmental conditions and bacterial genetic background. Our empirically parameterized model reproduced experimental dynamics of cells acquiring either the prophage or the plasmid well but could only reproduce the number of cells acquiring both elements by assuming complex interactions between conjugative plasmids and prophages in sequential infections. Varying phage and plasmid infection parameters over empirically realistic ranges revealed that plasmids can overcome the negative impact of prophages through high conjugation rates. Overall, the presence of prophages introduces an additional death rate for plasmid carriers, the magnitude of which is determined in non-trivial ways by the environment, the phage and the plasmid. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Asunto(s)
Conjugación Genética , Profagos , Farmacorresistencia Microbiana , Escherichia coli/genética , Transferencia de Gen Horizontal , Plásmidos/genética , Profagos/genética
3.
Viruses ; 12(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261037

RESUMEN

Many filamentous vibriophages encode virulence genes that lead to the emergence of pathogenic bacteria. Most genomes of filamentous vibriophages characterized up until today were isolated from human pathogens. Despite genome-based predictions that environmental Vibrios also contain filamentous phages that contribute to bacterial virulence, empirical evidence is scarce. This study aimed to characterize the bacteriophages of a marine pathogen, Vibrio alginolyticus (Kiel-alginolyticus ecotype) and to determine their role in bacterial virulence. To do so, we sequenced the phage-containing supernatant of eight different V. alginolyticus strains, characterized the phages therein and performed infection experiments on juvenile pipefish to assess their contribution to bacterial virulence. We were able to identify two actively replicating filamentous phages. Unique to this study was that all eight bacteria of the Kiel-alginolyticus ecotype have identical bacteriophages, supporting our previously established theory of a clonal expansion of the Kiel-alginolyticus ecotype. We further found that in one of the two filamentous phages, two phage-morphogenesis proteins (Zot and Ace) share high sequence similarity with putative toxins encoded on the Vibrio cholerae phage CTXΦ. The coverage of this filamentous phage correlated positively with virulence (measured in controlled infection experiments on the eukaryotic host), suggesting that this phage contributes to bacterial virulence.


Asunto(s)
Caudovirales/genética , Genoma Bacteriano , Inovirus/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/virología , Animales , Carga Bacteriana , Caudovirales/clasificación , Caudovirales/aislamiento & purificación , ADN Viral , Enfermedades de los Peces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Inovirus/clasificación , Inovirus/aislamiento & purificación , Vibriosis/veterinaria , Vibrio alginolyticus/clasificación , Vibrio alginolyticus/patogenicidad , Virulencia
4.
BMC Genomics ; 21(1): 354, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393168

RESUMEN

BACKGROUND: Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. RESULTS: We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. CONCLUSION: We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.


Asunto(s)
Variación Genética , Genoma Bacteriano , Vibrio alginolyticus/genética , Resistencia a Medicamentos/genética , Evolución Molecular , Transferencia de Gen Horizontal , Islas Genómicas , Filogenia , Vibrio alginolyticus/clasificación , Vibrio alginolyticus/aislamiento & purificación , Vibrio alginolyticus/patogenicidad , Virulencia/genética
5.
Genome Announc ; 5(48)2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192085

RESUMEN

Here, we present the draft genome sequence of Vibrio splendidus type strain DSM 19640. V. splendidus is an abundant species among coastal vibrioplankton. The assembly resulted in a 5,729,362-bp draft genome with 5,032 protein-coding sequences, 6 rRNAs, and 117 tRNAs.

6.
Mar Pollut Bull ; 71(1-2): 222-9, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23660441

RESUMEN

It is unclear whether habitat degradation correlates with tolerance of marine invertebrates to abiotic stress. We therefore tested whether resistance to climate change-related stressors differs between populations of the green mussel Perna viridis from a heavily impacted and a mostly pristine site in West Java, Indonesia. In laboratory experiments, we compared their oxygen consumption and mortality under lowered salinity (-13 and -18 units, both responses), hypoxia (0.5 mg/l, mortality only) and thermal stress (+7 °C, mortality only). Mussels from the eutrophied and polluted Jakarta Bay showed a significantly smaller deviation from their normal oxygen consumption and higher survival rates when stressed than their conspecifics from the unaffected Lada Bay. This shows that human induced habitat degradation correlates with mussel tolerance to environmental stress. We discuss possible mechanisms - e.g. the selection of tolerant genotypes or habitat-specific differences in the nutritional status of the mussels - that could explain our observation.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente , Perna/fisiología , Estrés Fisiológico , Animales , Eutrofización , Indonesia , Salinidad , Agua de Mar/química , Contaminantes del Agua/análisis , Contaminación del Agua/análisis , Contaminación del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...