Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412896, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363695

RESUMEN

The development of high-voltage lithium metal batteries (LMBs) encounters significant challenges due to aggressive electrode chemistry. Recently, locally concentrated ionic liquid electrolytes (LCILEs) have garnered attention for their exceptional stability with both Li anodes and high-voltage cathodes. However, there remains a limited understanding of how diluents in LCILEs affect the thermodynamic stability of the solvation structure and transportation dynamics of Li+ ions. Herein, we propose a wide-temperature LCILEs with 1,3-dichloropropane (DCP13) diluent to construct a non-equilibrium solvation structure under external electric field, wherein the DCP13 diluent enters the Li+ ion solvation sheath to enhance Li+ ion transport and suppress oxidative side reactions at high-nickel cathode (LiNi0.9Co0.05Mn0.05O2, NCM90).Consequently, a Li/NCM90 cell utilizing this LCILE achieves a high capacity retention of 94% after 240 cycles at 4.3 V, also operates stably at high cut-off voltages from 4.4 to 4.6 V and over a wide temperature range from -20 to 60 °C. Additionally, an Ah-level pouch cell with this LCILE simultaneously achieves high-energy-density and stable cycling, manifesting the practical feasibility. This work redefines the role of diluents in LCILEs, providing inspiration for electrolyte design in developing high-energy-density batteries.

2.
ACS Appl Mater Interfaces ; 16(7): 8895-8902, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38348831

RESUMEN

Polymerized ionic liquid (PIL)-based gel polymer electrolytes (GPEs) are well known as highly safe and stable electrolytes but with low ambient ionic conductivity. Herein, we first designed and synthesized an IL monomer with a long and flexible side chain and then mixed it with LiTFSI and MEMPTFSI to construct a PIL-based GPE (denoted as GM-GPE). The special molecular structure of the monomer greatly improves the ionic transport through the PIL chain, and the introduction of MEMPTFSI plasticizer further improves the ionic conductivity, promoting a TFSI--anion-derived SEI formation to suppress Li dendrite growth and forming an electrostatic shielding effect of MEMP+ cations to promote the uniform deposition of Li+. Consequently, the as-prepared GM-GPE exhibits high ambient ionic conductivity (4.3 × 10-4 S cm-1, 30 °C), robust electrochemical stability, excellent thermal stability, nonflammability, and superior ability to inhibit Li dendrite growth. The resultant LiFePO4|GM-GPE|Li cell exhibits a high discharge capacity of 150 mA h g-1 at 0.2 C along with a good cycling stability and rate capability. This work brings about new guidance for the development of high-quality GPEs with high ionic conductivity, high stability, and safety for long cycling and dendrite-free lithium metal batteries.

3.
ACS Nano ; 17(18): 18103-18113, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676245

RESUMEN

Ether-based electrolytes are competitive choices to meet the growing requirements for fast-charging and low-temperature lithium-ion batteries (LIBs) due to the low viscosity and low melting point of ether solvents. Unfortunately, the graphite (Gr) electrode is incompatible with commonly used ether solvents due to their irreversible co-intercalation into Gr interlayers. Here, we propose cyclopentyl methyl ether (CPME) as a co-intercalation-free ether solvent, which contains a cyclopentane group with large steric hindrance to obtain weakly solvating power with Li+ and a wide liquid-phase temperature range (-140 to +106 °C). A weakly solvating electrolyte (WSE) based on CPME and fluoroethylene carbonate (FEC) cosolvents can simultaneously achieve fast desolvation ability and high ionic conductivity, which also induces a LiF-rich solid electrolyte interphase (SEI) on the Gr anode. Therefore, the Gr/Li half-cell with this WSE can deliver outstanding rate capability, stable cycling performance, and high specific capacity (319 mAh g-1) at an ultralow temperature of -60 °C. Furthermore, a practical LiFePO4 (loading ≈25 mg cm-2)/Gr (loading ≈12 mg cm-2) pouch cell with this WSE also reveals outstanding rate capability and stable long-term cycling performance above 1000 cycles with a high Coulombic efficiency (≈99.9%) and achieves an impressive low-temperature application potential at -60 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...