Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(2): 1225-1242, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38228402

RESUMEN

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate inflammatory processes. Here, we describe the discovery of two clinical candidate IRAK4 inhibitors, BAY1834845 (zabedosertib) and BAY1830839, starting from a high-throughput screening hit derived from Bayer's compound library. By exploiting binding site features distinct to IRAK4 using an in-house docking model, liabilities of the original hit could surprisingly be overcome to confer both candidates with a unique combination of good potency and selectivity. Favorable DMPK profiles and activity in animal inflammation models led to the selection of these two compounds for clinical development in patients.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Indazoles , Quinasas Asociadas a Receptores de Interleucina-1 , Piridinas , Animales , Humanos , Sitios de Unión , Inflamación
2.
Br J Haematol ; 204(1): 191-205, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38011941

RESUMEN

The DNA damage response (DDR) is the cellular process of preserving an intact genome and is often deregulated in lymphoma cells. The ataxia telangiectasia and Rad3-related (ATR) kinase is a crucial factor of DDR in the response to DNA single-strand breaks. ATR inhibitors are agents that have shown considerable clinical potential in this context. We characterized the activity of the ATR inhibitor elimusertib (BAY 1895344) in a large panel of lymphoma cell lines. Furthermore, we evaluated its activity combined with the clinically approved PI3K inhibitor copanlisib in vitro and in vivo. Elimusertib exhibits potent anti-tumour activity across various lymphoma subtypes, which is associated with the expression of genes related to replication stress, cell cycle regulation and, as also sustained by CRISPR Cas9 experiments, CDKN2A loss. In several tumour models, elimusertib demonstrated widespread anti-tumour activity stronger than ceralasertib, another ATR inhibitor. This activity is present in both DDR-proficient and DDR-deficient lymphoma models. Furthermore, a combination of ATR and PI3K inhibition by treatment with elimusertib and copanlisib has in vitro and in vivo anti-tumour activity, providing a potential new treatment option for lymphoma patients.


Asunto(s)
Linfoma , Neoplasias , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Linfoma/tratamiento farmacológico , Daño del ADN
3.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38159110

RESUMEN

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Asunto(s)
Antineoplásicos , Neoplasias , Niño , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Biomarcadores , Línea Celular Tumoral
4.
J Pathol ; 259(2): 194-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373784

RESUMEN

Excessive genomic instability coupled with abnormalities in DNA repair pathways induces high levels of 'replication stress' when cancer cells propagate. Rather than hampering cancer cell proliferation, novel treatment strategies are turning their attention towards targeting cell cycle checkpoint kinases (such as ATR, CHK1, WEE1, and others) along the DNA damage response and replicative stress response pathways, thereby allowing unrepaired DNA damage to be carried forward towards mitotic catastrophe and apoptosis. The selective ATR kinase inhibitor elimusertib (BAY 1895344) has demonstrated preclinical and clinical monotherapy activity; however, reliable predictive biomarkers of treatment benefit are still lacking. In this study, using gene expression profiling of 24 cell lines from different cancer types and in a panel of ovarian cancer cell lines, we found that nuclear-specific enrichment of checkpoint kinase 1 (CHK1) correlated with increased sensitivity to elimusertib. Using an advanced multispectral imaging system in subsequent cell line-derived xenograft specimens, we showed a trend between nuclear phosphorylated CHK1 (pCHK1) staining and increased sensitivity to the ATR inhibitor elimusertib, indicating the potential value of pCHK1 expression as a predictive biomarker of ATR inhibitor sensitivity. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Daño del ADN , Inhibidores de Proteínas Quinasas , Femenino , Humanos , Proliferación Celular , Línea Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Biomarcadores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Nat Commun ; 13(1): 4297, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879366

RESUMEN

Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma Alveolar/tratamiento farmacológico , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Embrionario/genética
6.
Bioconjug Chem ; 33(6): 1210-1221, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35658441

RESUMEN

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Nicotinamida Fosforribosiltransferasa , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antígenos B7 , Línea Celular Tumoral , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Front Med (Lausanne) ; 9: 1071086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726355

RESUMEN

Targeted alpha therapy (TAT) is a promising approach for addressing unmet needs in oncology. Inherent properties make α-emitting radionuclides well suited to cancer therapy, including high linear energy transfer (LET), penetration range of 2-10 cell layers, induction of complex double-stranded DNA breaks, and immune-stimulatory effects. Several alpha radionuclides, including radium-223 (223Ra), actinium-225 (225Ac), and thorium-227 (227Th), have been investigated. Conjugation of tumor targeting modalities, such as antibodies and small molecules, with a chelator moiety and subsequent radiolabeling with α-emitters enables specific delivery of cytotoxic payloads to different tumor types. 223Ra dichloride, approved for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) with bone-metastatic disease and no visceral metastasis, is the only approved and commercialized alpha therapy. However, 223Ra dichloride cannot currently be complexed to targeting moieties. In contrast to 223Ra, 227Th may be readily chelated, which allows radiolabeling of tumor targeting moieties to produce targeted thorium conjugates (TTCs), facilitating delivery to a broad range of tumors. TTCs have shown promise in pre-clinical studies across a range of tumor-cell expressing antigens. A clinical study in hematological malignancy targeting CD22 has demonstrated early signs of activity. Furthermore, pre-clinical studies show additive or synergistic effects when TTCs are combined with established anti-cancer therapies, for example androgen receptor inhibitors (ARI), DNA damage response inhibitors such as poly (ADP)-ribose polymerase inhibitors or ataxia telangiectasia and Rad3-related kinase inhibitors, as well as immune checkpoint inhibitors.

8.
J Med Chem ; 64(17): 12723-12737, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34428039

RESUMEN

Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proteína Quinasa Activada por ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Proteína Quinasa Activada por ADN/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Estructura Molecular , Fosfatidilinositol 3-Quinasas/genética , Ratas , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Discov ; 11(1): 80-91, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32988960

RESUMEN

Targeting the ataxia telangiectasia and RAD3-related (ATR) enzyme represents a promising anticancer strategy for tumors with DNA damage response (DDR) defects and replication stress, including inactivation of ataxia telangiectasia mutated (ATM) signaling. We report the dose-escalation portion of the phase I first-in-human trial of oral ATR inhibitor BAY 1895344 intermittently dosed 5 to 80 mg twice daily in 21 patients with advanced solid tumors. The MTD was 40 mg twice daily 3 days on/4 days off. Most common adverse events were manageable and reversible hematologic toxicities. Partial responses were achieved in 4 patients and stable disease in 8 patients. Median duration of response was 315.5 days. Responders had ATM protein loss and/or deleterious ATM mutations and received doses ≥40 mg twice daily. Overall, BAY 1895344 is well tolerated, with antitumor activity against cancers with certain DDR defects, including ATM loss. An expansion phase continues in patients with DDR deficiency. SIGNIFICANCE: Oral BAY 1895344 was tolerable, with antitumor activity in heavily pretreated patients with various advanced solid tumors, particularly those with ATM deleterious mutations and/or loss of ATM protein; pharmacodynamic results supported a mechanism of action of increased DNA damage. Further study is warranted in this patient population.See related commentary by Italiano, p. 14.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/efectos adversos
10.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158305

RESUMEN

Steroid hormone signaling induces vast gene expression programs which necessitate the local formation of transcription factories at regulatory regions and large-scale alterations of the genome architecture to allow communication among distantly related cis-acting regions. This involves major stress at the genomic DNA level. Transcriptionally active regions are generally instable and prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore essential to maintain genome integrity at these exposed regions. The DDR is a complex network involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1), the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia-telangiectasia-mutated (ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair factors interact with the androgen and estrogen receptors and support their transcriptional functions. Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or somatic alterations in DDR genes, and their association with disease outcome and treatment response led to intensive efforts towards identifying selective inhibitors targeting the major players in this process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented. Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the potential to enhance efficacy but still needs further investigation.


Asunto(s)
Neoplasias de la Mama/terapia , Daño del ADN/fisiología , Terapia Molecular Dirigida/métodos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Reparación del ADN/genética , Femenino , Humanos , Masculino , Oncología Médica/métodos , Oncología Médica/tendencias , Terapia Molecular Dirigida/tendencias , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal/genética
11.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233768

RESUMEN

IL3RA (CD123) is the alpha subunit of the interleukin 3 (IL-3) receptor, which regulates the proliferation, survival, and differentiation of hematopoietic cells. IL3RA is frequently expressed in acute myeloid leukemia (AML) and classical Hodgkin lymphoma (HL), presenting an opportunity to treat AML and HL with an IL3RA-directed antibody-drug conjugate (ADC). Here, we describe BAY-943 (IL3RA-ADC), a novel IL3RA-targeting ADC consisting of a humanized anti-IL3RA antibody conjugated to a potent proprietary kinesin spindle protein inhibitor (KSPi). In vitro, IL3RA-ADC showed potent and selective antiproliferative efficacy in a panel of IL3RA-expressing AML and HL cell lines. In vivo, IL3RA-ADC improved survival and reduced tumor burden in IL3RA-positive human AML cell line-derived (MOLM-13 and MV-4-11) as well as in patient-derived xenograft (PDX) models (AM7577 and AML11655) in mice. Furthermore, IL3RA-ADC induced complete tumor remission in 12 out of 13 mice in an IL3RA-positive HL cell line-derived xenograft model (HDLM-2). IL3RA-ADC was well-tolerated and showed no signs of thrombocytopenia, neutropenia, or liver toxicity in rats, or in cynomolgus monkeys when dosed up to 20 mg/kg. Overall, the preclinical results support the further development of BAY-943 as an innovative approach for the treatment of IL3RA-positive hematologic malignancies.

12.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502336

RESUMEN

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Morfolinas/administración & dosificación , Morfolinas/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Administración Oral , Animales , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Disponibilidad Biológica , Carboplatino/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores del Citocromo P-450 CYP2C8/química , Inhibidores del Citocromo P-450 CYP2C8/farmacología , Reparación del ADN/efectos de los fármacos , Perros , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Femenino , Humanos , Ratones SCID , Microsomas Hepáticos/efectos de los fármacos , Morfolinas/química , Pirazoles/química , Ratas Wistar , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Med Chem ; 63(15): 8025-8042, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32338514

RESUMEN

Inhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10-fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy models.


Asunto(s)
Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Perros , Femenino , Células HT29 , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Ratas , Ratas Wistar , Huso Acromático/metabolismo , Resultado del Tratamiento
14.
Mol Cancer Ther ; 19(1): 26-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31582533

RESUMEN

The DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair. Here, we studied the effect of the novel selective ATR kinase inhibitor BAY 1895344 on tumor cell growth and viability. Potent antiproliferative activity was demonstrated in a broad spectrum of human tumor cell lines. BAY 1895344 exhibited strong monotherapy efficacy in cancer xenograft models that carry DNA damage repair deficiencies. The combination of BAY 1895344 with DNA damage-inducing chemotherapy or external beam radiotherapy (EBRT) showed synergistic antitumor activity. Combination treatment with BAY 1895344 and DDR inhibitors achieved strong synergistic antiproliferative activity in vitro, and combined inhibition of ATR and PARP signaling using olaparib demonstrated synergistic antitumor activity in vivo Furthermore, the combination of BAY 1895344 with the novel, nonsteroidal androgen receptor antagonist darolutamide resulted in significantly improved antitumor efficacy compared with respective single-agent treatments in hormone-dependent prostate cancer, and addition of EBRT resulted in even further enhanced antitumor efficacy. Thus, the ATR inhibitor BAY 1895344 may provide new therapeutic options for the treatment of cancers with certain DDR deficiencies in monotherapy and in combination with DNA damage-inducing or DNA repair-compromising cancer therapies by improving their efficacy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Femenino , Humanos , Ratones
15.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31859507

RESUMEN

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Sitios de Unión , Cristalografía por Rayos X , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Fosforilación , Relación Estructura-Actividad , Especificidad por Sustrato
16.
ACS Med Chem Lett ; 10(11): 1537-1542, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31749907

RESUMEN

6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, potently and selectively inhibits phosphodiesterases 3A and 3B (PDE3A and PDE3B) and kills cancer cells by inducing PDE3A/B interactions with SFLN12. The structure-activity relationship (SAR) of DNMDP analogs was evaluated using a phenotypic viability assay, resulting in several compounds with suitable pharmacokinetic properties for in vivo analysis. One of these compounds, BRD9500, was active in an SK-MEL-3 xenograft model of cancer.

17.
Int J Radiat Oncol Biol Phys ; 105(2): 410-422, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31255687

RESUMEN

PURPOSE: Fibroblast growth factor receptor 2 (FGFR2) has been previously reported to be overexpressed in several types of cancer, whereas the expression in normal tissue is considered to be moderate to low. Thus, FGFR2 is regarded as an attractive tumor antigen for targeted alpha therapy. This study reports the evaluation of an FGFR2-targeted thorium-227 conjugate (FGFR2-TTC, BAY 2304058) comprising an anti-FGFR2 antibody, a chelator moiety covalently conjugated to the antibody, and the alpha particle-emitting radionuclide thorium-227. FGFR2-TTC was assessed as a monotherapy and in combination with the DNA damage response inhibitor ATRi BAY 1895344. METHODS AND MATERIALS: The in vitro cytotoxicity and mechanism of action were evaluated by determining cell viability, the DNA damage response marker γH2A.X, and cell cycle analyses. The in vivo efficacy was determined using human tumor xenograft models in nude mice. RESULTS: In vitro mechanistic assays demonstrated upregulation of γH2A.X and induction of cell cycle arrest in several FGFR2-expressing cancer cell lines after treatment with FGFR2-TTC. In vivo, FGFR2-TTC significantly inhibited tumor growth at a dose of 500 kBq/kg in the xenograft models NCI-H716, SNU-16, and MFM-223. By combining FGFR2-TTC with the ATR inhibitor BAY 1895344, an increased potency was observed in vitro, as were elevated levels of γH2A.X and inhibition of FGFR2-TTC-mediated cell cycle arrest. In the MFM-223 tumor xenograft model, combination of the ATRi BAY 1895344 with FGFR2-TTC resulted in significant tumor growth inhibition at doses at which the single agents had no effect. CONCLUSIONS: The data provide a mechanism-based rationale for combining the FGFR2-TTC with the ATRi BAY 1895344 as a new therapeutic approach for treatment of FGFR2-positive tumors from different cancer indications.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Neoplasias de la Mama/radioterapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Radioinmunoterapia/métodos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/uso terapéutico , Torio/uso terapéutico , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/uso terapéutico , Daño del ADN , Combinación de Medicamentos , Sinergismo Farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Histonas/metabolismo , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Ratones , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Torio/farmacocinética , Compuestos de Torio/uso terapéutico , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Nucl Med ; 60(9): 1293-1300, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30850485

RESUMEN

Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix "i") when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.


Asunto(s)
Daño del ADN/efectos de los fármacos , Proteínas Ligadas a GPI/farmacología , Neoplasias Ováricas/diagnóstico por imagen , Radiofármacos/farmacología , Torio/farmacología , Partículas alfa , Animales , Antineoplásicos , Apoptosis , Línea Celular Tumoral , Quelantes/farmacología , Reparación del ADN , Femenino , Xenoinjertos , Humanos , Mesotelina , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Piridonas/farmacología , Distribución Tisular
19.
Cancer Cell ; 31(1): 64-78, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28073005

RESUMEN

Compared with follicular lymphoma, high PI3Kα expression was more prevalent in diffuse large B cell lymphoma (DLBCL), although both tumor types expressed substantial PI3Kδ. Simultaneous inhibition of PI3Kα and PI3Kδ dramatically enhanced the anti-tumor profile in ABC-DLBCL models compared with selective inhibition of PI3Kδ, PI3Kα, or BTK. The anti-tumor activity was associated with suppression of p-AKT and a mechanism of blocking nuclear factor-κB activation driven by CD79mut, CARD11mut, TNFAIP3mut, or MYD88mut. Inhibition of PI3Kα/δ resulted in tumor regression in an ibrutinib-resistant CD79BWT/MYD88mut patient-derived ABC-DLBCL model. Furthermore, rebound activation of BTK and AKT was identified as a mechanism limiting CD79Bmut-ABC-DLBCL to show a robust response to PI3K and BTK inhibitor monotherapies. A combination of ibrutinib with the PI3Kα/δ inhibitor copanlisib produced a sustained complete response in vivo in CD79Bmut/MYD88mut ABC-DLBCL models.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , FN-kappa B/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores de Antígenos de Linfocitos B/fisiología , Adenina/análogos & derivados , Adulto , Agammaglobulinemia Tirosina Quinasa , Anciano , Animales , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/mortalidad , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Piperidinas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Quinazolinas/farmacología
20.
Cancer Lett ; 390: 21-29, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28043914

RESUMEN

The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Oncogenes/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridazinas/farmacología , Animales , Antineoplásicos/química , Western Blotting , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...