Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Acta Biomater ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362453

RESUMEN

The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV). This is achieved by implementing a stress-based fiber reorientation law, which seeks to align the fibers with local traction vectors, such that contractile force and load bearing capabilities are maximized. By utilizing the total stress (passive and active), both myofibers and collagen fibers are reoriented. Simulations are conducted to predict the baseline fiber configuration in a normal LV as well as the adverse fiber reorientation that occurs due to different size MIs. The baseline model successfully captures the transmural variation of helical fiber angles within the LV wall, as well as the transverse fiber angle variation from base to apex. In the models of MI, the patterns of fiber reorientation in the infarct, border zone, and remote regions closely align with previous experimental findings, with a significant increase in fibers oriented in a left-handed helical configuration and increased dispersion in the infarct region. Furthermore, the severity of fiber reorientation and impairment of pumping performance both showed a correlation with the size of the infarct. The proposed multiscale modeling framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future. STATEMENT OF SIGNIFICANCE: The organization of muscle and collagen fibers within the heart plays a significant role in defining cardiac function. This organization can become disrupted after a heart attack, leading to degraded pumping performance. In the current study, we implemented a stress-based fiber reorientation law into a computer model of the heart, which seeks to realign the fibers such that contractile force and load bearing capabilities are maximized. The primary goal was to evaluate the effects of different sized heart attacks. We observed substantial fiber remodeling in the heart, which matched experimental observations. The proposed computational framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future.

2.
Ann Biomed Eng ; 52(8): 2024-2038, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38564074

RESUMEN

Multiscale models of the cardiovascular system are emerging as effective tools for investigating the mechanisms that drive ventricular growth and remodeling. These models can predict how molecular-level mechanisms impact organ-level structure and function and could provide new insights that help improve patient care. MyoFE is a multiscale computer framework that bridges molecular and organ-level mechanisms in a finite element model of the left ventricle that is coupled with the systemic circulation. In this study, we extend MyoFE to include a growth algorithm, based on volumetric growth theory, to simulate concentric growth (wall thickening/thinning) and eccentric growth (chamber dilation/constriction) in response to valvular diseases. Specifically in our model, concentric growth is controlled by time-averaged total stress along the fiber direction over a cardiac cycle while eccentric growth responds to time-averaged intracellular myofiber passive stress over a cardiac cycle. The new framework correctly predicted different forms of growth in response to two types of valvular diseases, namely aortic stenosis and mitral regurgitation. Furthermore, the model predicted that LV size and function are nearly restored (reversal of growth) when the disease-mimicking perturbation was removed in the simulations for each valvular disorder. In conclusion, the simulations suggest that time-averaged total stress along the fiber direction and time-averaged intracellular myofiber passive stress can be used to drive concentric and eccentric growth in simulations of valve disease.


Asunto(s)
Análisis de Elementos Finitos , Ventrículos Cardíacos , Modelos Cardiovasculares , Humanos , Ventrículos Cardíacos/fisiopatología , Simulación por Computador , Estenosis de la Válvula Aórtica/fisiopatología , Enfermedades de las Válvulas Cardíacas/fisiopatología , Insuficiencia de la Válvula Mitral/fisiopatología
3.
Comput Biol Med ; 168: 107690, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984204

RESUMEN

Cardiovascular function is regulated by a short-term hemodynamic baroreflex loop, which tries to maintain arterial pressure at a normal level. In this study, we present a new multiscale model of the cardiovascular system named MyoFE. This framework integrates a mechanistic model of contraction at the myosin level into a finite-element-based model of the left ventricle pumping blood through the systemic circulation. The model is coupled with a closed-loop feedback control of arterial pressure inspired by a baroreflex algorithm previously published by our team. The reflex loop mimics the afferent neuron pathway via a normalized signal derived from arterial pressure. The efferent pathway is represented by a kinetic model that simulates the net result of neural processing in the medulla and cell-level responses to autonomic drive. The baroreflex control algorithm modulates parameters such as heart rate and vascular tone of vessels in the lumped-parameter model of systemic circulation. In addition, it spatially modulates intracellular Ca2+ dynamics and molecular-level function of both the thick and the thin myofilaments in the left ventricle. Our study demonstrates that the baroreflex algorithm can maintain arterial pressure in the presence of perturbations such as acute cases of altered aortic resistance, mitral regurgitation, and myocardial infarction. The capabilities of this new multiscale model will be utilized in future research related to computational investigations of growth and remodeling.


Asunto(s)
Barorreflejo , Ventrículos Cardíacos , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Análisis de Elementos Finitos , Hemodinámica , Modelos Cardiovasculares
4.
Artif Organs ; 47(12): 1831-1847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37746896

RESUMEN

BACKGROUND: Left ventricular assist device (LVAD) is associated with a high incidence of right ventricular (RV) failure, which is hypothesized to be caused by the occurring inter-ventricular interactions when the LV is unloaded. Factors contributing to these interactions are unknown. METHODS: We used computer modeling to investigate the impact of the HeartMate 3 LVAD on RV functions. The model was first calibrated against pressure-volume (PV) loops associated with a heart failure (HF) patient and validated against measurements of inter-ventricular interactions in animal experiments. The model was then applied to investigate the effects of LVAD on (1) RV chamber contractility indexed by V 60 derived from its end-systolic PV relationship, and (2) RV diastolic function indexed by V 20 derived from its end-diastolic PV relationship. We also investigated how septal wall thickness and regional contractility affect the impact of LVAD on RV function. RESULTS: The impact of LVAD on RV chamber contractility is small at a pump speed lower than 4k rpm. At a higher pump speed between 4k and 9k rpm, however, RV chamber contractility is reduced (by ~3% at 6k rpm and ~10% at 9k rpm). The reduction of RV chamber contractility is greater with a thinner septal wall or with a lower myocardial contractility at the LV free wall, septum, or RV free wall. CONCLUSION: RV chamber contractility is reduced at a pump speed higher than 4k rpm, and this reduction is greater with a thinner septal wall or lower regional myocardial contractility. Findings here may have clinical implications in identifying LVAD patients who may suffer from RV failure.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Disfunción Ventricular Derecha , Animales , Humanos , Corazón Auxiliar/efectos adversos , Función Ventricular Derecha , Diástole , Ventrículos Cardíacos , Insuficiencia Cardíaca/cirugía , Insuficiencia Cardíaca/complicaciones , Disfunción Ventricular Derecha/etiología , Función Ventricular Izquierda
5.
Bioengineering (Basel) ; 10(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37237671

RESUMEN

The geometrical details and biomechanical relationships of the mitral valve-left ventricular apparatus are very complex and have posed as an area of research interest for decades. These characteristics play a major role in identifying and perfecting the optimal approaches to treat diseases of this system when the restoration of biomechanical and mechano-biological conditions becomes the main target. Over the years, engineering approaches have helped to revolutionize the field in this regard. Furthermore, advanced modelling modalities have contributed greatly to the development of novel devices and less invasive strategies. This article provides an overview and narrative of the evolution of mitral valve therapy with special focus on two diseases frequently encountered by cardiac surgeons and interventional cardiologists: ischemic and degenerative mitral regurgitation.

6.
Sci Rep ; 13(1): 958, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653468

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is associated with many pathological features, such as a reduction in global longitudinal strain (GLS), myofiber disarray and hypertrophy. The effects of these features on left ventricle (LV) function are, however, not clear in two phenotypes of HCM, namely, obstructive and non-obstructive. To address this issue, we developed patient-specific computational models of the LV using clinical measurements from 2 female HCM patients and a control subject. Left ventricular mechanics was described using an active stress formulation and myofiber disarray was described using a structural tensor in the constitutive models. Unloaded LV configuration for each subject was first determined from their respective end-diastole LV geometries segmented from the cardiac magnetic resonance images, and an empirical single-beat estimation of the end-diastolic pressure volume relationship. The LV was then connected to a closed-loop circulatory model and calibrated using the clinically measured LV pressure and volume waveforms, peak GLS and blood pressure. Without consideration of myofiber disarray, peak myofiber tension was found to be lowest in the obstructive HCM subject (60 kPa), followed by the non-obstructive subject (242 kPa) and the control subject (375 kPa). With increasing myofiber disarray, we found that peak tension has to increase in the HCM models to match the clinical measurements. In the obstructive HCM patient, however, peak tension was still depressed (cf. normal subject) at the largest degree of myofiber disarray found in the clinic. The computational modeling workflow proposed here can be used in future studies with more HCM patient data.


Asunto(s)
Cardiomiopatía Hipertrófica , Ventrículos Cardíacos , Femenino , Humanos , Cardiomiopatía Hipertrófica/patología , Función Ventricular Izquierda/fisiología
7.
Biomech Model Mechanobiol ; 21(6): 1903-1917, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36107358

RESUMEN

Multiscale models of the cardiovascular system can provide new insights into physiological and pathological processes. PyMyoVent is a computer model that bridges from molecular- to organ-level function and which simulates a left ventricle pumping blood through the systemic circulation. Initial work with PyMyoVent focused on the end-systolic pressure volume relationship and ranked potential therapeutic strategies by their impact on contractility. This manuscript extends the PyMyoVent framework by adding closed-loop feedback control of arterial pressure. The control algorithm mimics important features of the physiological baroreflex and was developed as part of a long-term program that focuses on growth and biological remodeling. Inspired by the underlying biology, the reflex algorithm uses an afferent signal derived from arterial pressure to drive a kinetic model that mimics the net result of neural processing in the medulla and cell-level responses to autonomic drive. The kinetic model outputs control signals that are constrained between limits that represent maximum parasympathetic and maximum sympathetic drive and which modulate heart rate, intracellular Ca2+ dynamics, the molecular-level function of both the thick and the thin myofilaments, and vascular tone. Simulations show that the algorithm can regulate mean arterial pressure at user-defined setpoints as well as maintaining arterial pressure when challenged by changes in blood volume and/or valve resistance. The reflex also regulates arterial pressure when cell-level contractility is modulated to mimic the idealized impact of myotropes. These capabilities will be important for future work that uses computer modeling to investigate clinical conditions and treatments.


Asunto(s)
Barorreflejo , Sistema Cardiovascular , Barorreflejo/fisiología , Presión Arterial , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología
8.
Cardiovasc Eng Technol ; 13(6): 857-863, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35396692

RESUMEN

PURPOSE: Mouse models are widely utilized to enhance our understanding of cardiac disease. The goal of this study is to investigate the reproducibility of strain parameters that were measured in mice using cardiac magnetic resonance (CMR) feature-tracking (CMR42, Canada). METHODS: We retrospectively analyzed black-blood CMR datasets from thirteen C57BL/6 B6.SJL-CD45.1 mice (N = 10 female, N = 3 male) that were imaged previously. The circumferential, longitudinal, and radial (Ecc, Ell, and Err, respectively) parameters of strain were measured in the mid-ventricular region of the left ventricle. Intraobserver and interobserver reproducibility were assessed for both the end-systolic (ES) and peak strain. RESULTS: The ES strain had larger intraclass correlation coefficient (ICC) values when compared to peak strain, for both the intraobserver and interobserver reproducibility studies. Specifically, the intraobserver study showed excellent reproducibility for all three ES strain parameters, namely, Ecc (ICC 0.95, 95% CI 0.83-0.98), Ell (ICC 0.90, 95% CI 0.59-0.97), and Err (ICC 0.92, 95% CI 0.73-0.97). This was also the case for the interobserver study, namely, Ecc (ICC 0.92, 95% CI 0.60-0.98), Ell (ICC 0.76, 95% CI 0.33-0.93), and Err (ICC 0.93, 95% CI 0.68-0.98). Additionally, the coefficient of variation values were all < 10%. CONCLUSION: The results of this preliminary study showed excellent reproducibility for all ES strain parameters, with good to excellent reproducibility for the peak strain parameters. Moreover, all ES strain parameters had larger ICC values than the peak strain. In general, these results imply that feature-tracking with CMR42 software and black-blood cine images can be reliably used to assess strain patterns in mice.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Masculino , Femenino , Ratones , Animales , Imagen por Resonancia Cinemagnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Ratones Endogámicos C57BL , Espectroscopía de Resonancia Magnética , Función Ventricular Izquierda
9.
J Cardiovasc Transl Res ; 15(4): 845-854, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34993757

RESUMEN

Current in vitro models of the left heart establish the pressure difference required to close the mitral valve by sealing and pressurizing the ventricular side of the valve, limiting important access to the subvalvular apparatus. This paper describes and evaluates a system that establishes physiological pressure differences across the valve using vacuum on the atrial side. The subvalvular apparatus is open to atmospheric pressure and accessible by tools and sensors, establishing a novel technique for experimentation on atrioventricular valves. Porcine mitral valves were excised and closed by vacuum within the atrial chamber. Images were used to document and analyze closure of the leaflets. Papillary muscle force and regurgitant flow rate were measured to be 4.07 N at 120 mmHg and approximately 12.1 ml/s respectively, both of which are within clinically relevant ranges. The relative ease of these measurements demonstrates the usefulness of improved ventricular access at peak pressure/force closure.


Asunto(s)
Insuficiencia de la Válvula Mitral , Válvula Mitral , Porcinos , Animales , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Cuerdas Tendinosas , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Vacio , Músculos Papilares
10.
Biophys Rev ; 13(5): 729-746, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34777616

RESUMEN

Cardiomyocytes can adapt their size, shape, and orientation in response to altered biomechanical or biochemical stimuli. The process by which the heart undergoes structural changes-affecting both geometry and material properties-in response to altered ventricular loading, altered hormonal levels, or mutant sarcomeric proteins is broadly known as cardiac growth and remodeling (G&R). Although it is likely that cardiac G&R initially occurs as an adaptive response of the heart to the underlying stimuli, prolonged pathological changes can lead to increased risk of atrial fibrillation, heart failure, and sudden death. During the past few decades, computational models have been extensively used to investigate the mechanisms of cardiac G&R, as a complement to experimental measurements. These models have provided an opportunity to quantitatively study the relationships between the underlying stimuli (primarily mechanical) and the adverse outcomes of cardiac G&R, i.e., alterations in ventricular size and function. State-of-the-art computational models have shown promise in predicting the progression of cardiac G&R. However, there are still limitations that need to be addressed in future works to advance the field. In this review, we first outline the current state of computational models of cardiac growth and myofiber remodeling. Then, we discuss the potential limitations of current models of cardiac G&R that need to be addressed before they can be utilized in clinical care. Finally, we briefly discuss the next feasible steps and future directions that could advance the field of cardiac G&R.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...