Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2702: 261-274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679624

RESUMEN

Antibody phage display is a valuable in vitro technology to generate recombinant, sequence-defined antibodies for research, diagnostics, and therapy. Up to now (autumn 2022), 14 FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab. Additionally, recombinant, sequence-defined antibodies have significant advantages over their polyclonal counterparts.For a successful in vitro antibody generation by phage display, a suitable panning strategy is highly important. We present in this book chapter the panning in solution and its advantages over panning with immobilized antigens and give detailed protocols for the panning and screening procedure.


Asunto(s)
Anticuerpos , Técnicas de Visualización de Superficie Celular , Estaciones del Año , Tecnología , Fenómenos Magnéticos
2.
mSystems ; 7(6): e0068522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445109

RESUMEN

Members of the genus Aromatoleum thrive in diverse habitats and use a broad range of recalcitrant organic molecules coupled to denitrification or O2 respiration. To gain a holistic understanding of the model organism A. aromaticum EbN1T, we studied its catabolic network dynamics in response to 3-(4-hydroxyphenyl)propanoate, phenylalanine, 3-hydroxybenzoate, benzoate, and acetate utilized under nitrate-reducing versus oxic conditions. Integrated multi-omics (transcriptome, proteome, and metabolome) covered most of the catabolic network (199 genes) and allowed for the refining of knowledge of the degradation modules studied. Their substrate-dependent regulation showed differing degrees of specificity, ranging from high with 3-(4-hydroxyphenyl)propanoate to mostly relaxed with benzoate. For benzoate, the transcript and protein formation were essentially constitutive, contrasted by that of anoxia-specific versus oxia-specific metabolite profiles. The matrix factorization of transcriptomic data revealed that the anaerobic modules accounted for most of the variance across the degradation network. The respiration network appeared to be constitutive, both on the transcript and protein levels, except for nitrate reductase (with narGHI expression occurring only under nitrate-reducing conditions). The anoxia/nitrate-dependent transcription of denitrification genes is apparently controlled by three FNR-type regulators as well as by NarXL (all constitutively formed). The resequencing and functional reannotation of the genome fostered a genome-scale metabolic model, which is comprised of 655 enzyme-catalyzed reactions and 731 distinct metabolites. The model predictions for growth rates and biomass yields agreed well with experimental stoichiometric data, except for 3-(4-hydroxyphenyl)propanoate, with which 4-hydroxybenzoate was exported. Taken together, the combination of multi-omics, growth physiology, and a metabolic model advanced our knowledge of an environmentally relevant microorganism that differs significantly from other bacterial model strains. IMPORTANCE Aromatic compounds are abundant constituents not only of natural organic matter but also of bulk industrial chemicals and fuel components of environmental concern. Considering the widespread occurrence of redox gradients in the biosphere, facultative anaerobic degradation specialists can be assumed to play a prominent role in the natural mineralization of organic matter and in bioremediation at contaminated sites. Surprisingly, differential multi-omics profiling of the A. aromaticum EbN1T studied here revealed relaxed regulatory stringency across its four main physiological modi operandi (i.e., O2-independent and O2-dependent degradation reactions versus denitrification and O2 respiration). Combining multi-omics analyses with a genome-scale metabolic model aligned with measured growth performances establishes A. aromaticum EbN1T as a systems-biology model organism and provides unprecedented insights into how this bacterium functions on a holistic level. Moreover, this experimental platform invites future studies on eco-systems and synthetic biology of the environmentally relevant betaproteobacterial Aromatoleum/Azoarcus/Thauera cluster.


Asunto(s)
Propionatos , Biología de Sistemas , Anaerobiosis , Nitratos , Benzoatos
3.
Viruses ; 14(10)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298643

RESUMEN

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.


Asunto(s)
Baculoviridae , COVID-19 , Humanos , Animales , Baculoviridae/genética , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/genética , Angiotensina II , Insectos , Anticuerpos Monoclonales
4.
Nat Commun ; 13(1): 2670, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562366

RESUMEN

The recent emergence of the Omicron variant has raised concerns on vaccine efficacy and the urgent need to study more efficient vaccination strategies. Here we observed that an mRNA vaccine booster in individuals vaccinated with two doses of inactivated vaccine significantly increased the plasma level of specific antibodies that bind to the receptor-binding domain (RBD) or the spike (S) ectodomain (S1 + S2) of both the G614 and the Omicron variants, compared to two doses of homologous inactivated vaccine. The level of RBD- and S-specific IgG antibodies and virus neutralization titers against variants of concern in the heterologous vaccination group were similar to that in individuals receiving three doses of homologous mRNA-vaccine or a boost of mRNA vaccine after infection, but markedly higher than that in individuals receiving three doses of a homologous inactivated vaccine. This heterologous vaccination regime furthermore significantly enhanced the RBD-specific memory B cell response and S1-specific T cell response, compared to two or three doses of homologous inactivated vaccine. Our study demonstrates that mRNA vaccine booster in individuals vaccinated with inactivated vaccines can be highly beneficial, as it markedly increases the humoral and cellular immune responses against the virus, including the Omicron variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , ARN Mensajero/genética , SARS-CoV-2/genética , Vacunación , Vacunas de Productos Inactivados , Vacunas Sintéticas , Vacunas de ARNm
5.
Biospektrum (Heidelb) ; 28(2): 178-179, 2022.
Artículo en Alemán | MEDLINE | ID: mdl-35369108

RESUMEN

Despite readily available alternative technologies, many antibodies in research and diagnostics are still generated and produced with the use of laboratory animals. Here, we portrait the concept of animal-free recombinant antibodies and the generation of such an antibody against the spike-protein of SARS-Cov-2. The scientific community needs to raise awareness for more sustainable animal-free alternatives, especially as they offer a path to more reliable and reproducible data.

6.
BMC Med ; 20(1): 102, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236358

RESUMEN

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
7.
Biol Chem ; 403(5-6): 479-494, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35312243

RESUMEN

One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.


Asunto(s)
Anticuerpos Monoclonales , Pez Cebra , Animales , Anticuerpos Monoclonales/química , Mapeo Epitopo , Epítopos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Conejos
8.
Front Cell Infect Microbiol ; 11: 717689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869052

RESUMEN

Generation of sequence defined antibodies from universal libraries by phage display has been established over the past three decades as a robust method to cope with the increasing market demand in therapy, diagnostics and research. For applications requiring the bivalent antigen binding and an Fc part for detection, phage display generated single chain Fv (scFv) antibody fragments can rapidly be genetically fused to the Fc moiety of an IgG for the production in eukaryotic cells of antibodies with IgG-like properties. In contrast to conversion of scFv into IgG format, the conversion to scFv-Fc requires only a single cloning step, and provides significantly higher yields in transient cell culture production than IgG. ScFv-Fcs can be effective as neutralizing antibodies in vivo against a panel of pathogens and toxins. However, different scFv fragments are more heterologous in respect of stability than Fab fragments. While some scFv fragments can be made extremely stable, this may change due to few mutations, and is not predictable from the sequence of a newly selected antibody. To mitigate the necessity to assess the stability for every scFv-Fc antibody, we developed a generic lyophilization protocol to improve their shelf life. We compared long-term stability and binding activity of phage display-derived antibodies in the scFv-Fc and IgG format, either stored in liquid or lyophilized state. Conversion of scFv-Fcs into the full IgG format reduced protein degradation and aggregation, but in some cases compromised binding activity. Comparably to IgG conversion, lyophilization of scFv-Fc resulted in the preservation of the antibodies' initial properties after storage, without any drop in affinity for any of the tested antibody clones.


Asunto(s)
Anticuerpos de Cadena Única , Anticuerpos Neutralizantes , Técnicas de Visualización de Superficie Celular , Liofilización , Esperanza de Vida , Anticuerpos de Cadena Única/genética
9.
Pharmaceutics ; 13(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834363

RESUMEN

When preparing biological reference materials, the stability of the lyophilized product is critical for long-term storage, particularly in order to meet WHO International Standards, which are not assigned expiry dates but are expected to be in use for several decades. Glass ampoules are typically used by the National Institute for Biological Standards and Control (NIBSC) for the lyophilization of biological materials. More recently, a clear need has arisen for the filling of smaller volumes, for which ampoules may not be optimal. We investigated the use of plastic microtubes as an alternative container for small volume fills. In this study, a recombinant diphtheria antitoxin monoclonal antibody (DATMAB) was used as a model molecule to investigate the suitability of plastic microtubes for filling small volumes. The stability and quality of the dried material was assessed after an accelerated degradation study using a toxin neutralization test and size exclusion HPLC. While microtubes have shown some promise in the past for use in the lyophilization of some biological materials, issues with stability may arise when more labile materials are freeze-dried. We demonstrate here that the microtube format is unsuitable for ensuring the stability of this monoclonal antibody.

10.
Cell Rep ; 36(4): 109433, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34273271

RESUMEN

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , Humanos , Mutación/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307196

RESUMEN

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Asunto(s)
Bacteriófagos , COVID-19 , Enfermedades Transmisibles , Animales , Anticuerpos Monoclonales , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/terapia , Humanos , Pandemias , SARS-CoV-2
12.
Nat Commun ; 12(1): 1577, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707427

RESUMEN

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Afinidad de Anticuerpos , COVID-19/epidemiología , Línea Celular , Chlorocebus aethiops , Biblioteca de Genes , Voluntarios Sanos , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/aislamiento & purificación , Modelos Moleculares , Mutación , Pruebas de Neutralización , Pandemias , Biblioteca de Péptidos , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
13.
Sci Rep ; 10(1): 21393, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288836

RESUMEN

Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Antígenos Virales/biosíntesis , Clonación Molecular , Proteínas Recombinantes/biosíntesis , SARS-CoV-2/inmunología , Animales , Células HEK293 , Humanos , Estabilidad Proteica , Spodoptera
14.
Biospektrum (Heidelb) ; 26(4): 416-417, 2020.
Artículo en Alemán | MEDLINE | ID: mdl-32834539

RESUMEN

Today, recombinant antibodies can replace animal-derived primary antibodies in almost all applications. Due to their monoclonal origin and always known sequence, they offer optimal reproducibility. In contrast, almost all secondary antibodies are still made from animal sera. Multiclonal antibodies made by animal-free recombinant methods here offer a higher quality replacement for serum-derived secondary antibodies.

15.
Sci Rep ; 10(1): 571, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953428

RESUMEN

Diphtheria is an infectious disease caused by Corynebacterium diphtheriae. The bacterium primarily infects the throat and upper airways and the produced diphtheria toxin (DT), which binds to the elongation factor 2 and blocks protein synthesis, can spread through the bloodstream and affect organs, such as the heart and kidneys. For more than 125 years, the therapy against diphtheria has been based on polyclonal horse sera directed against DT (diphtheria antitoxin; DAT). Animal sera have many disadvantages including serum sickness, batch-to-batch variation in quality and the use of animals for production. In this work, 400 human recombinant antibodies were generated against DT from two different phage display panning strategies using a human immune library. A panning in microtiter plates resulted in 22 unique in vitro neutralizing antibodies and a panning in solution combined with a functional neutralization screening resulted in 268 in vitro neutralizing antibodies. 61 unique antibodies were further characterized as scFv-Fc with 35 produced as fully human IgG1. The best in vitro neutralizing antibody showed an estimated relative potency of 454 IU/mg and minimal effective dose 50% (MED50%) of 3.0 pM at a constant amount of DT (4x minimal cytopathic dose) in the IgG format. The targeted domains of the 35 antibodies were analyzed by immunoblot and by epitope mapping using phage display. All three DT domains (enzymatic domain, translocation domain and receptor binding domain) are targets for neutralizing antibodies. When toxin neutralization assays were performed at higher toxin dose levels, the neutralizing capacity of individual antibodies was markedly reduced but this was largely compensated for by using two or more antibodies in combination, resulting in a potency of 79.4 IU/mg in the in vivo intradermal challenge assay. These recombinant antibody combinations are candidates for further clinical and regulatory development to replace equine DAT.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Corynebacterium diphtheriae/metabolismo , Toxina Diftérica/antagonistas & inhibidores , Mapeo Epitopo/métodos , Animales , Anticuerpos Neutralizantes/farmacología , Corynebacterium diphtheriae/inmunología , Toxina Diftérica/química , Cobayas , Humanos , Inmunoglobulina G/farmacología , Inyecciones Intradérmicas , Modelos Moleculares , Factor 2 de Elongación Peptídica/metabolismo , Biblioteca de Péptidos , Conformación Proteica , Anticuerpos de Cadena Única/farmacología
16.
Methods Mol Biol ; 2070: 143-155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31625094

RESUMEN

Antibody phage display is the most used in vitro technology to generate recombinant, mainly human, antibodies as tools for research, for diagnostic assays, and for therapeutics. Up to now (autumn 2018), eleven FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab.A key to generate successfully human antibodies in vitro is the choice of the most appropriate antibody selection method, for our goal. In this book chapter, we describe the antibody selection process (panning) in solution and its advantages over panning on immobilized antigens. Detailed protocols on the panning procedure and the screening of monoclonal binders are given.


Asunto(s)
Antígenos/química , Biotina/química , Biblioteca de Péptidos , Anticuerpos de Cadena Única , Biotinilación , Humanos , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
17.
Methods Mol Biol ; 1701: 273-284, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29116510

RESUMEN

The most common in vitro technology to generate human antibodies is phage display. This technology is a key technology to select recombinant antibodies for the use as research tools, in diagnostic tests, and for the development of therapeutics.In this review, the high-throughput compatible selection of antibodies (scFv) in microtiter plates is described. The given detailed protocols allow the antibody selection ("panning"), screening and identification of monoclonal antibodies in less than 1 week.


Asunto(s)
Clonación Molecular/métodos , Biblioteca de Genes , Biblioteca de Péptidos , Anticuerpos de Cadena Única/genética , Humanos , Anticuerpos de Cadena Única/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...