Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 7(1): 27, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808398

RESUMEN

The fragile X premutation is a CGG trinucleotide repeat expansion between 55 and 200 repeats in the 5'-untranslated region of the fragile X mental retardation 1 (FMR1) gene. Human carriers of the premutation allele are at risk of developing the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Characteristic neuropathology associated with FXTAS includes intranuclear inclusions in neurons and astroglia. Previous studies recapitulated these histopathological features in neurons in a knock-in mouse model, but without significant astroglial pathology. To determine the role of astroglia in FXTAS, we generated a transgenic mouse line (Gfa2-CGG99-eGFP) that selectively expresses a 99-CGG repeat expansion linked to an enhanced green fluorescent protein (eGFP) reporter in astroglia throughout the brain, including cerebellar Bergmann glia. Behaviorally these mice displayed impaired motor performance on the ladder-rung test, but paradoxically better performance on the rotarod. Immunocytochemical analysis revealed that CGG99-eGFP co-localized with GFAP and S-100ß, but not with NeuN, Iba1, or MBP, indicating that CGG99-eGFP expression is specific to astroglia. Ubiquitin-positive intranuclear inclusions were found in eGFP-expressing glia throughout the brain. In addition, intracytoplasmic ubiquitin-positive inclusions were found outside the nucleus in distal astrocyte processes. Intriguingly, intranuclear inclusions, in the absence of eGFP mRNA and eGFP fluorescence, were present in neurons of the hypothalamus and neocortex. Furthermore, intranuclear inclusions in both neurons and astrocytes displayed immunofluorescent labeling for the polyglycine peptide FMRpolyG, implicating FMRpolyG in the pathology found in Gfa2-CGG99 mice. Considered together, these results show that Gfa2-CGG99 expression in mice is sufficient to induce key features of FXTAS pathology, including formation of intranuclear inclusions, translation of FMRpolyG, and deficits in motor function.


Asunto(s)
Astrocitos/fisiología , Ataxia/genética , Comunicación Celular/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Trastornos de la Destreza Motora/genética , Temblor/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Ataxia/metabolismo , Ataxia/patología , Secuencia de Bases , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/biosíntesis , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos de la Destreza Motora/metabolismo , Trastornos de la Destreza Motora/patología , Temblor/metabolismo , Temblor/patología
2.
Epilepsia ; 56(4): 626-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25752321

RESUMEN

OBJECTIVE: Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS: To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS: Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE: Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.


Asunto(s)
Modelos Animales de Enfermedad , Genes fos/fisiología , Hipocampo/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animales , Femenino , Hipocampo/patología , Técnicas de Cultivo de Órganos , Heterotopia Nodular Periventricular/patología , Embarazo , Ratas , Ratas Sprague-Dawley
3.
Genes Brain Behav ; 13(4): 394-408, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24494598

RESUMEN

The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1(-/-) ) mice lacking this channel. Kv2.1(-/-) mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1(-/-) mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1(-/-) mice appear unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1(-/-) animals. Field recordings from hippocampal slices of Kv2.1(-/-) mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1(-/-) mice, long-term potentiation at the Schaffer collateral - CA1 synapse is decreased. Kv2.1(-/-) mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1(-/-) mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1(-/-) mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function.


Asunto(s)
Potenciales de Acción , Eliminación de Gen , Neuronas/fisiología , Fenotipo , Convulsiones/genética , Canales de Potasio Shab/metabolismo , Animales , Convulsivantes/farmacología , Flurotilo/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Pilocarpina/farmacología , Convulsiones/fisiopatología , Canales de Potasio Shab/genética
4.
Epilepsia ; 53 Suppl 1: 35-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612807

RESUMEN

Cortical dysplasia of various types, reflecting abnormalities of brain development, have been closely associated with epileptic activities. Yet, there remains considerable discussion about if/how these structural lesions give rise to seizure phenomenology. Animal models have been used to investigate the cause-effect relationships between aberrant cortical structure and epilepsy. In this article, we discuss three such models: (1) the Eker rat model of tuberous sclerosis, in which a gene mutation gives rise to cortical disorganization and cytologically abnormal cellular elements; (2) the p35 knockout mouse, in which the genetic dysfunction gives rise to compromised cortical organization and lamination, but in which the cellular elements appear normal; and (3) the methylazoxymethanol-exposed rat, in which time-specific chemical DNA disruption leads to abnormal patterns of cell formation and migration, resulting in heterotopic neuronal clusters. Integrating data from studies of these animal models with related clinical observations, we propose that the neuropathologic features of these cortical dysplastic lesions are insufficient to determine the seizure-initiating process. Rather, it is their interaction with a more subtly disrupted cortical "surround" that constitutes the circuitry underlying epileptiform activities as well as seizure propensity and ictogenesis.


Asunto(s)
Epilepsia/etiología , Epilepsia/patología , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/patología , Animales , Carcinógenos , Modelos Animales de Enfermedad , Epilepsia/diagnóstico , Femenino , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico , Acetato de Metilazoximetanol/análogos & derivados , Ratones , Ratones Noqueados , Fosfotransferasas/genética , Fosfotransferasas/fisiología , Embarazo , Ratas , Esclerosis Tuberosa/patología
5.
Epilepsia ; 53 Suppl 1: 125-33, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612817

RESUMEN

p53 plays an essential role in mediating apoptotic responses to cellular stress, especially DNA damage. In a kainic acid (KA)-induced seizure model in mice, hippocampal CA1 pyramidal cells undergo delayed neuronal death at day 3-4 following systemic KA administration. We previously demonstrated that CA1 neurons in p53(-/-) animals are protected from such apoptotic neuronal loss. However, extensive morphological damage associated with DNA strand breaks in CA1 neurons was found in a fraction of p53(-/-) animals at earlier time points (8 h to 2 days). No comparable acute damage was observed in wild-type animals. Stereological counting confirmed that there was no significant loss of CA1 pyramidal cells in p53(-/-) animals at 7 days post-KA injection. These results suggest that seizure-induced DNA strand breaks are accumulated to a greater extent but do not lead to apoptosis in the absence of p53. In wild-type animals, therefore, p53 appears to stimulate DNA repair and also mediate apoptosis in CA1 neurons in this excitotoxicity model. These results also reflect remarkable plasticity of neurons in recovery from injury.


Asunto(s)
Región CA1 Hipocampal/patología , Daño del ADN/fisiología , Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Kaínico/toxicidad , Células Piramidales/patología , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/efectos de los fármacos , Recuento de Células , Supervivencia Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Noqueados , Perfusión , Embarazo , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/patología
6.
Epilepsia ; 53 Suppl 1: 150-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612820

RESUMEN

The fragile X mental retardation 1 gene (Fmr1) is polymorphic for CGG trinucleotide repeat number in the 5'-untranslated region, with repeat lengths <45 associated with typical development and repeat lengths >200 resulting in hypermethylation and transcriptional silencing of the gene and mental retardation in the fragile X Syndrome (FXS). Individuals with CGG repeat expansions between 55 and 200 are carriers of the fragile X premutation (PM). PM carriers show a phenotype that can include anxiety, depression, social phobia, and memory deficits. They are also at risk for developing fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by tremor, ataxia, cognitive impairment, and neuropathologic features including intranuclear inclusions in neurons and astrocytes, loss of Purkinje cells, and white matter disease. However, very little is known about dendritic morphology in PM or in FXTAS. Therefore, we carried out a Golgi study of dendritic complexity and dendritic spine morphology in layer II/III pyramidal neurons in primary visual cortex in a knock-in (KI) mouse model of the PM. These CGG KI mice carry an expanded CGG trinucleotide repeat on Fmr1, and model many features of the PM and FXTAS. Compared to wild-type (WT) mice, CGG KI mice showed fewer dendritic branches proximal to the soma, reduced total dendritic length, and a higher frequency of longer dendritic spines. The distribution of morphologic spine types (e.g., stubby, mushroom, filopodial) did not differ between WT and KI mice. These findings demonstrate that synaptic circuitry is abnormal in visual cortex of mice used to model the PM, and suggest that such changes may underlie neurologic features found in individuals carrying the PM as well as in individuals with FXTAS.


Asunto(s)
Dendritas/patología , Espinas Dendríticas/patología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Repeticiones de Trinucleótidos/genética , Corteza Visual/patología , Regiones no Traducidas 5'/genética , Animales , Animales Modificados Genéticamente , Ataxia/genética , Ataxia/patología , Western Blotting , Interpretación Estadística de Datos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genotipo , Aparato de Golgi/patología , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Mutación/fisiología , Células Piramidales/fisiología , Células Piramidales/ultraestructura , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sinapsis/patología , Sinapsis/ultraestructura
7.
Epilepsia ; 53 Suppl 1: 161-70, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612821

RESUMEN

The p35 knockout (p35-/-) mouse is an animal model of temporal lobe epilepsy that recapitulates key neuroanatomic abnormalities-granule cell dispersion and mossy fiber sprouting-observed in the hippocampal formation of humans, as well as spontaneous seizure activity. It is a useful model in which to study the relationship between the abnormal neuronal structure and seizure activity to further our understanding of cortical dysplasia in epileptogenesis. Our previous work using this mouse model characterized the anatomic features of the dentate granule cells and the functional implications of these abnormalities on increased recurrent excitation. These data also suggested that there might be compromised inhibition in this animal model. We pursued this possibility, focusing our investigation on inhibitory circuitry. In preliminary investigations using neuroanatomic tools (immunocytochemistry, camera lucida reconstructions of individually labeled interneurons, and electron microscopy) combined with intracellular electrophysiology, we observed no significant reduction in the number of symmetric versus asymmetric synaptic contacts on dentate granule cell somata, and no statistically significant changes in evoked early or late inhibition. Although there were some abnormalities in the morphology/distribution of inhibitory interneurons (as well as a larger population of dentate granule cells) of the dentate gyrus, overall inhibition in the p35 knockout mouse appeared to be largely intact.


Asunto(s)
Giro Dentado/patología , Interneuronas/patología , Fosfotransferasas/genética , Fosfotransferasas/fisiología , Animales , Gránulos Citoplasmáticos/patología , Gránulos Citoplasmáticos/ultraestructura , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microelectrodos , Microscopía Electrónica , Neuronas/fisiología
8.
Epilepsy Res ; 92(1): 74-84, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20863664

RESUMEN

Traumatic brain injury (TBI) frequently leads to epilepsy. The process of epileptogenesis - the development of that seizure state - is still poorly understood, and effective antiepileptogenic treatments have yet to be identified. The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy, but has not been extensively tested for its efficacy in preventing the development of the seizure state, and certainly not within the context of TBI-induced epileptogenesis. We have used a rat model of TBI - fluid percussion injury (FPI) - to test the hypothesis that KD treatment is antiepileptogenic and protects the brain from neuronal cell loss following TBI. Rats fed a KD had a higher seizure threshold (longer latency to flurothyl-induced seizure activity) than rats fed a standard diet (SD); this effect was seen when KD was in place at the time of seizure testing (3 and 6 weeks following FPI), but was absent when KD had been replaced by SD at time of testing. FPI caused significant hippocampal cell loss in both KD-fed and SD-fed rats; the degree of cell loss appeared to be reduced by KD treatment before FPI but not after FPI. These results are consistent with prior demonstrations that KD raises seizure threshold, but do not provide support for the hypothesis that KD administered for a limited time directly before or after FPI alters later seizure sensitivity; that is, within the limits of this model and protocol, there is no evidence for KD-induced antiepileptogenesis.


Asunto(s)
Lesiones Encefálicas/complicaciones , Dieta Cetogénica , Hipocampo/patología , Convulsiones , Ácido 3-Hidroxibutírico/metabolismo , Animales , Lesiones Encefálicas/etiología , Antígeno CD11b/metabolismo , Recuento de Células/métodos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Estudios de Seguimiento , Lateralidad Funcional , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Compuestos Orgánicos/efectos adversos , Percusión/efectos adversos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Convulsiones/dietoterapia , Convulsiones/etiología , Convulsiones/patología , Estadísticas no Paramétricas
9.
Brain Res ; 1318: 155-66, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20051238

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by CGG trinucleotide repeat expansions in the fragile X mental retardation 1 (FMR1) gene. The neuropathological hallmark of the disease is the presence of ubiquitin-positive intranuclear inclusions in neurons and in astrocytes. Ubiquitin-positive intranuclear inclusions have also been found in the neurons of transgenic mice model carrying an expanded CGG((98)) trinucleotide repeat of human origin but have not previously been described in glial cells. Therefore, we used immunocytochemical methods to determine the pathological features of nuclear and/or cytoplasmic inclusions in astrocytes, Bergmann glia, and neurons, as well as relationships between inclusion patterns, age, and repeat length in CGG knock-in (KI) mice in comparison with wild-type mice. In CGG KI mice, ubiquitin-positive intranuclear inclusions were found in neurons (e.g., pyramidal cells, GABAergic neurons) throughout the brain in cortical and subcortical brain regions; these inclusions increased in number and size with advanced age. Ubiquitin-positive intranuclear inclusions were also present in protoplasmic astrocytes, including Bergmann glia in the cerebellum. The morphology of intranuclear inclusions in CGG KI mice was compared to that of typical inclusions in human neurons and astrocytes in postmortem FXTAS brain tissue. This new finding of previously unreported pathology in astrocytes of CGG KI mice now provides an important mouse model to study astrocyte pathology in human FXTAS.


Asunto(s)
Encéfalo/patología , Núcleo Celular/patología , Síndrome del Cromosoma X Frágil/patología , Neuroglía/patología , Neuronas/patología , Ubiquitina/metabolismo , Factores de Edad , Anciano , Animales , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/patología , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/metabolismo , Neuronas/metabolismo , Factores Sexuales , Expansión de Repetición de Trinucleótido
10.
Behav Neurosci ; 123(6): 1315-24, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20001115

RESUMEN

Fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that is the result of a CGG trinucleotide repeat expansion in the range of 55-200 in the 5' UTR of the FMR1 gene. To better understand the progression of this disorder, a knock-in (CGG KI) mouse was developed by substituting the mouse CGG8 trinucleotide repeat with an expanded CGG98 repeat from human origin. It has been shown that this mouse shows deficits on the water maze at 52 weeks of age. In the present study, this CGG KI mouse model of FXTAS was tested on behavioral tasks that emphasize spatial information processing. The results demonstrate that at 12 and 24 weeks of age, CGG KI mice were unable to detect a change in the distance between two objects (metric task), but showed intact detection of a transposition of the objects (topological task). At 48 weeks of age, CGG KI mice were unable to detect either change in object location. These data indicate that hippocampal-dependent impairments in spatial processing may occur prior to parietal cortex-dependent impairments in FXTAS.


Asunto(s)
Conducta Exploratoria/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Reconocimiento en Psicología/fisiología , Conducta Espacial/fisiología , Factores de Edad , Análisis de Varianza , Animales , Conducta Animal/fisiología , Giro Dentado/patología , Genotipo , Inmunohistoquímica , Cuerpos de Inclusión Intranucleares/patología , Masculino , Ratones , Ratones Transgénicos , Lóbulo Parietal/patología , Percepción Espacial/fisiología , Factores de Tiempo , Expansión de Repetición de Trinucleótido
11.
Epilepsia ; 48(11): 2023-46, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17651419

RESUMEN

PURPOSE: Mice lacking the Kv1.1 potassium channel alpha subunit encoded by the Kcna1 gene develop recurrent behavioral seizures early in life. We examined the neuropathological consequences of seizure activity in the Kv1.1(-/-) (knock-out) mouse, and explored the effects of injecting a viral vector carrying the deleted Kcna1 gene into hippocampal neurons. METHODS: Morphological techniques were used to assess neuropathological patterns in hippocampus of Kv1.1(-/-) animals. Immunohistochemical and biochemical techniques were used to monitor ion channel expression in Kv1.1(-/-) brain. Both wild-type and knockout mice were injected (bilaterally into hippocampus) with an HSV1 amplicon vector that contained the rat Kcna1 subunit gene and/or the E. coli lacZ reporter gene. Vector-injected mice were examined to determine the extent of neuronal infection. RESULTS: Video/EEG monitoring confirmed interictal abnormalities and seizure occurrence in Kv1.1(-/-) mice. Neuropathological assessment suggested that hippocampal damage (silver stain) and reorganization (Timm stain) occurred only after animals had exhibited severe prolonged seizures (status epilepticus). Ablation of Kcna1 did not result in compensatory changes in expression levels of other related ion channel subunits. Vector injection resulted in infection primarily of granule cells in hippocampus, but the number of infected neurons was quite variable across subjects. Kcna1 immunocytochemistry showed "ectopic" Kv1.1 alpha channel subunit expression. CONCLUSIONS: Kcna1 deletion in mice results in a seizure disorder that resembles--electrographically and neuropathologically--the patterns seen in rodent models of temporal lobe epilepsy. HSV1 vector-mediated gene transfer into hippocampus yielded variable neuronal infection.


Asunto(s)
Eliminación de Gen , Técnicas de Transferencia de Gen , Hipocampo/patología , Canal de Potasio Kv.1.1/genética , Convulsiones/genética , Convulsiones/patología , Animales , Colorantes , Electroencefalografía/estadística & datos numéricos , Expresión Génica , Vectores Genéticos/genética , Herpesvirus Humano 1/genética , Hipocampo/química , Hipocampo/metabolismo , Inmunohistoquímica , Canal de Potasio Kv.1.1/deficiencia , Canal de Potasio Kv.1.1/metabolismo , Ratones , Ratones Noqueados , Monitoreo Fisiológico , Convulsiones/diagnóstico , Índice de Severidad de la Enfermedad
12.
Dev Neurosci ; 29(1-2): 99-112, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17148953

RESUMEN

Abnormal brain development, induced by genetic influences or resulting from a perinatal trauma, has been recognized as a cause of seizure disorders. To understand how and when these structural abnormalities form, and how they are involved in epileptogenesis, it is important to generate and investigate animal models. We have studied one such model, a mouse in which deletion of the p35 gene (p35-/-) gives rise to both structural disorganization and seizure-like function. We now report that aberrant dentate development can be recognized in the organotypic hippocampal slice culture preparation generated from p35-/- mouse pups. In these p35-/- cultures, an abnormally high proportion of dentate granule cells migrates into the hilus and molecular layer, and develops aberrant dendritic and axonal morphology. In addition, astrocyte formation in the dentate gyrus is disturbed, as is the distribution of GABAergic interneurons. Although the p35-/- brain shows widespread abnormalities, the disorganization of the hippocampal dentate region is particularly intriguing since a similar pathology is often found in hippocampi of temporal lobe epilepsy patients. The abnormal granule cell features occur early in development, and are independent of seizure activity. Further, these aberrant patterns and histopathological features of p35-/- culture preparations closely resemble those observed in p35 knockout mice in vivo. This culture preparation thus provides an experimentally accessible window for studying abnormal developmental factors that can result in seizure propensity.


Asunto(s)
Diferenciación Celular/genética , Giro Dentado/anomalías , Malformaciones del Sistema Nervioso/genética , Neuronas/citología , Fosfotransferasas/genética , Animales , Astrocitos/citología , Astrocitos/metabolismo , Axones/metabolismo , Axones/ultraestructura , Movimiento Celular/genética , Dendritas/metabolismo , Dendritas/ultraestructura , Giro Dentado/citología , Giro Dentado/metabolismo , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Ácido gamma-Aminobutírico/metabolismo
13.
Epilepsy Res ; 73(1): 53-64, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17011168

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by multi-organ pathologies. Most TSC patients exhibit seizures, usually starting in early childhood. The neuropathological hallmarks of the disease - cortical tubers, containing cytopathological neuronal and glial cell types - appear to be the source of seizure initiation. However, the contribution of these aberrant cell populations to TSC-associated epilepsies is not fully understood. To gain further insight, investigators have attempted to generate animal models with TSC-like brain abnormalities. In the current study, we focused on the Eker rat, in which there is a spontaneous mutation of the TSC2 gene (TSC2+/-). We attempted to exacerbate TSC-like brain pathologies with a "second-hit" strategy - exposing young pups to ionizing irradiation of different intensities, and at different developmental timepoints (between E18 and P6). We found that the frequency of occurrence of dysmorphic neurons and giant astrocytes was strongly dependent on irradiation dose, and weakly dependent on timing of irradiation in Eker rats, but not in irradiated normal controls. The frequency of TSC-like pathology was progressive; there were many more abnormal cells at 3 months compared to 1 month post-irradiation. Measures of seizure propensity (flurothyl seizure latency) and brain excitability (paired-pulse and post-tetanic stimulation studies in vitro), however, showed no functional changes associated with the appearance of TSC-like cellular abnormalities in irradiated Eker rats.


Asunto(s)
Corteza Cerebral/efectos de la radiación , Epilepsia/patología , Convulsiones/patología , Esclerosis Tuberosa/patología , Proteínas Supresoras de Tumor/genética , Animales , Animales Recién Nacidos , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Electroencefalografía , Epilepsia/etiología , Mutación , Neocórtex/patología , Neocórtex/efectos de la radiación , Ratas , Ratas Mutantes , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/efectos de la radiación , Grabación en Video , Irradiación Corporal Total
14.
J Neurosci ; 24(41): 9005-14, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15483119

RESUMEN

There is a high correlation between pediatric epilepsies and neuronal migration disorders. What remains unclear is whether there are intrinsic features of the individual dysplastic cells that give rise to heightened seizure susceptibility, or whether these dysplastic cells contribute to seizure activity by establishing abnormal circuits that alter the balance of inhibition and excitation. Mice lacking a functional p35 gene provide an ideal model in which to address these questions, because these knock-out animals not only exhibit aberrant neuronal migration but also demonstrate spontaneous seizures. Extracellular field recordings from hippocampal slices, characterizing the input-output relationship in the dentate, revealed little difference between wild-type and knock-out mice under both normal and elevated extracellular potassium conditions. However, in the presence of the GABA(A) antagonist bicuculline, p35 knock-out slices, but not wild-type slices, exhibited prolonged depolarizations in response to stimulation of the perforant path. There were no significant differences in the intrinsic properties of dentate granule cells (i.e., input resistance, time constant, action potential generation) from wild-type versus knock-out mice. However, antidromic activation (mossy fiber stimulation) evoked an excitatory synaptic response in over 65% of granule cells from p35 knock-out slices that was never observed in wild-type slices. Ultrastructural analyses identified morphological substrates for this aberrant excitation: recurrent axon collaterals, abnormal basal dendrites, and mossy fiber terminals forming synapses onto the spines of neighboring granule cells. These studies suggest that granule cells in p35 knock-out mice contribute to seizure activity by forming an abnormal excitatory feedback circuit.


Asunto(s)
Giro Dentado/fisiología , Epilepsia/fisiopatología , Hipocampo/fisiología , Proteínas del Tejido Nervioso/deficiencia , Neuronas/fisiología , Animales , Bicuculina/farmacología , Dendritas/patología , Dendritas/ultraestructura , Giro Dentado/citología , Giro Dentado/patología , Estimulación Eléctrica , Epilepsia/genética , Epilepsia/patología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/genética , Predisposición Genética a la Enfermedad , Hipocampo/citología , Hipocampo/patología , Técnicas In Vitro , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/fisiopatología , Fibras Musgosas del Hipocampo/ultraestructura , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/patología
15.
Adv Exp Med Biol ; 548: 145-74, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15250593

RESUMEN

Cortical dysplasia syndromes--those conditions of abnormal brain structure/organization that arise during aberrant brain development--frequently involve epileptic seizures. Neuropathological and neuroradiological analyses have provided descriptions and categorizations based on gross anatomical and cellular histological features (e.g., lissencephaly, heterotopia, giant cells), as well as on the developmental mechanisms likely to be involved in the abnormality (e.g., cell proliferation, migration). Recently, the genes responsible for several cortical dysplastic conditions have been identified and the underlying molecular processes investigated. However, it is still unclear how the various structural abnormalities associated with cortical dysplasia are related to (i.e., "cause") chronic seizures. To elucidate these relationships, a number of animal models of cortical dysplasia have been developed in rats and mice. Some models are based on laboratory manipulations that injure the brain (e.g., freeze, undercut, irradiation, teratogen exposure) of immature animals; others are based on spontaneous genetic mutations or on gene manipulations (knockouts/transgenics) that give rise to abnormal cortical structures. Such models of cortical dysplasia provide a means by which investigators can not only study the developmental mechanisms that give rise to these brain lesions, but also examine the cause-effect relationships between structural abnormalities and epileptogenesis.


Asunto(s)
Corteza Cerebral/anomalías , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Epilepsia/patología , Animales , Corteza Cerebral/fisiopatología , Epilepsia/etiología , Epilepsia/fisiopatología , Ratones , Ratas
16.
Acta Neuropathol ; 108(2): 97-108, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15185103

RESUMEN

Tuberous sclerosis (TSC) is an autosomal dominant disorder, caused by mutations of either the TSC1 or TSC2 gene. Characteristic brain pathologies (including cortical tubers and subependymal hamartomas/giant astrocytomas) are thought to cause epilepsy, as well as other neurological dysfunction. The Eker rat, which carries a spontaneous germline mutation of the TSC2 gene (TSC2+/-), provides a unique animal model in which to study the relationship between TSC cortical pathologies and epilepsy. In the present study, we have analyzed the seizure propensity and histopathological features of a modified Eker rat preparation, in which early postnatal irradiation was employed as a "second hit" stimulus in an attempt to exacerbate cortical malformations and increase seizure propensity. Irradiated Eker rats had a tendency toward lower seizure thresholds (latencies to flurothyl-induced seizures) than seen in non-irradiated Eker rats (significant difference) or irradiated wild-type rats (non-significant difference). The majority of irradiated Eker rats exhibited dysplastic cytomegalic neurons and giant astrocyte-like cells, similar to cytopathologies observed in TSC lesions of patients. The most prominent features in these brains were hamartoma-like lesions involving large eosinophilic cells, similar to giant tuber cells in human TSC. In some cells from these hamartomas, immunocytochemistry revealed features of both neuronal and glial phenotypes, suggesting an undifferentiated or immature cell population. Both normal-appearing and dysmorphic neurons, as well as cells in the hamartomas, exhibited immunopositivity for tuberin, the protein product of the TSC2 gene.


Asunto(s)
Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas Represoras/metabolismo , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Animales , Astrocitos/metabolismo , Astrocitos/ultraestructura , Corteza Cerebral/ultraestructura , Modelos Animales de Enfermedad , Flurotilo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato Descarboxilasa/metabolismo , Inmunohistoquímica/métodos , Proteínas de Filamentos Intermediarios/metabolismo , Isoenzimas/metabolismo , Microscopía Inmunoelectrónica/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Mutantes , Tiempo de Reacción/efectos de la radiación , Proteínas Represoras/genética , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Coloración y Etiquetado , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Irradiación Corporal Total/métodos
17.
Ultrasound Med Biol ; 28(3): 389-400, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11978420

RESUMEN

High-intensity focused ultrasound (HIFU) has been shown to generate lesions that destroy brain tissue while disrupting the blood-brain barrier (BBB) in the periphery of the lesion. BBB opening, however, has not been shown without damage, and the mechanisms by which HIFU induces BBB disruption remain unknown. We show that HIFU is capable of reversible, nondestructive, BBB disruption in a targeted region-of-interest (ROI) (29 of 55 applications; 26 of 55 applications showed no effect); this opening reverses after 72 h. Light microscopy demonstrates that HIFU either entirely preserves brain architecture while opening the BBB (18 of 29 applications), or generates tissue damage in a small volume within the region of BBB opening (11 of 29 applications). Electron microscopy supports these observations and suggests that HIFU disrupts the BBB by opening capillary endothelial cell tight junctions, an isolated ultrastructural effect that is different from the mechanisms through which other (untargeted) modalities, such as hyperosmotic solutions, hyperthermia and percussive injury disrupt the BBB.


Asunto(s)
Barrera Hematoencefálica/fisiología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/etiología , Encéfalo/patología , Encéfalo/ultraestructura , Animales , Microscopía Electrónica , Microscopía de Polarización , Ratas , Ratas Wistar , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA