Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 30(8): 687-705, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33749723

RESUMEN

Mutations in CHCHD10, coding for a mitochondrial intermembrane space protein, are a rare cause of autosomal dominant amyotrophic lateral sclerosis. Mutation-specific toxic gain of function or haploinsufficiency models have been proposed to explain pathogenicity. To decipher the metabolic dysfunction associated with the haploinsufficient p.R15L variant, we integrated transcriptomic, metabolomic and proteomic data sets in patient cells subjected to an energetic stress that forces the cells to rely on oxidative phosphorylation for ATP production. Patient cells had a complex I deficiency that resulted in an increased NADH/NAD+ ratio, diminished TCA cycle activity, a reorganization of one carbon metabolism and an increased AMP/ATP ratio leading to phosphorylation of AMPK and inhibition of mTORC1. These metabolic changes activated the unfolded protein response (UPR) in the ER through the IRE1/XBP1 pathway, upregulating downstream targets including ATF3, ATF4, CHOP and EGLN3, and two cytokine markers of mitochondrial disease, GDF15 and FGF21. Activation of the mitochondrial UPR was mediated through an upregulation of the transcription factors ATF4 and ATF5, leading to increased expression of mitochondrial proteases and heat shock proteins. There was a striking transcriptional up regulation of at least seven dual specific phosphatases, associated with an almost complete dephosphorylation of JNK isoforms, suggesting a concerted deactivation of MAP kinase pathways. This study demonstrates that loss of CHCHD10 function elicits an energy deficit that activates unique responses to nutrient stress in both the mitochondria and ER, which may contribute to the selective vulnerability of motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos , Proteínas Mitocondriales/genética , Mutación , Proteómica/métodos , Esclerosis Amiotrófica Lateral/metabolismo , Células Cultivadas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Ontología de Genes , Humanos , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/metabolismo , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
2.
Cell Metab ; 32(3): 479-497.e9, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877691

RESUMEN

We used BioID, a proximity-dependent biotinylation assay with 100 mitochondrial baits from all mitochondrial sub-compartments, to create a high-resolution human mitochondrial proximity interaction network. We identified 1,465 proteins, producing 15,626 unique high-confidence proximity interactions. Of these, 528 proteins were previously annotated as mitochondrial, nearly half of the mitochondrial proteome defined by Mitocarta 2.0. Bait-bait analysis showed a clear separation of mitochondrial compartments, and correlation analysis among preys across all baits allowed us to identify functional clusters involved in diverse mitochondrial functions and to assign uncharacterized proteins to specific modules. We demonstrate that this analysis can assign isoforms of the same mitochondrial protein to different mitochondrial sub-compartments and show that some proteins may have multiple cellular locations. Outer membrane baits showed specific proximity interactions with cytosolic proteins and proteins in other organellar membranes, suggesting specialization of proteins responsible for contact site formation between mitochondria and individual organelles.


Asunto(s)
Mitocondrias/química , Proteínas Mitocondriales/química , Mapas de Interacción de Proteínas , Biotinilación , Células Cultivadas , Células HEK293 , Humanos
3.
Hum Mol Genet ; 27(1): 178-189, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121267

RESUMEN

Coiled-helix coiled-helix domain containing protein 10 (CHCHD10) and its paralogue CHCHD2 belong to a family of twin CX9C motif proteins, most of which localize to the intermembrane space of mitochondria. Dominant mutations in CHCHD10 cause amyotrophic lateral sclerosis (ALS)/frontotemporal dementia, and mutations in CHCHD2 have been associated with Parkinson's disease, but the function of these proteins remains unknown. Here we show that the p.R15L CHCHD10 variant in ALS patient fibroblasts destabilizes the protein, leading to a defect in the assembly of Complex I, impaired cellular respiration, mitochondrial hyperfusion, an increase in the steady-state level of CHCHD2, and a severe proliferation defect on galactose, a substrate that forces cells to synthesize virtually all of their ATP aerobically. CHCHD10 and CHCHD2 appeared together in distinct foci by immunofluorescence analysis and could be quantitatively immunoprecipitated with antibodies against either protein. Blue native polyacrylamide gel electrophoresis analyses showed that both proteins migrated in a high molecular weight complex (220 kDa) in control cells, which was, however, absent in patient cells. CHCHD10 and CHCHD2 levels increased markedly in control cells in galactose medium, a response that was dampened in patient cells, and a new complex (40 kDa) appeared in both control and patient cells cultured in galactose. Re-entry of patient cells into the cell cycle, which occurred after prolonged culture in galactose, was associated with a marked increase in Complex I, and restoration of the oxygen consumption defect. Our results indicate that CHCHD10-CHCHD2 complexes are necessary for efficient mitochondrial respiration, and support a role for mitochondrial dysfunction in some patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Respiración de la Célula/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Factores de Transcripción/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Línea Celular , Respiración de la Célula/genética , Proteínas de Unión al ADN , Fibroblastos/patología , Estudios de Asociación Genética , Humanos , Mitocondrias/metabolismo , Factores de Transcripción/genética
4.
PLoS One ; 12(6): e0179967, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28654702

RESUMEN

Mitochondria translate the RNAs for 13 core polypeptides of respiratory chain and ATP synthase complexes that are essential for the assembly and function of these complexes. This process occurs in close proximity to the mitochondrial inner membrane. However, the mechanisms and molecular machinery involved in mitochondrial translation are not fully understood, and defects in this process can result in severe diseases. Stomatin-like protein (SLP)-2 is a mainly mitochondrial protein that forms cardiolipin- and prohibitin-enriched microdomains in the mitochondrial inner membrane that are important for the formation of respiratory supercomplexes and their function. Given this regulatory role of SLP-2 in processes closely associated with the mitochondrial inner membrane, we hypothesized that the function of SLP-2 would have an impact on mitochondrial translation. 35S-Methionine/cysteine pulse labeling of resting or activated T cells from T cell-specific Slp-2 knockout mice showed a significant impairment in the production of several mitochondrial DNA-encoded polypeptides following T cell activation, including Cytb, COXI, COXII, COXIII, and ATP6. Measurement of mitochondrial DNA stability and mitochondrial transcription revealed that this impairment was at the post-transcriptional level. Examination of mitochondrial ribosome assembly showed that SLP-2 migrated in sucrose-density gradients similarly to the large ribosomal subunit but that its deletion at the genetic level did not affect mitochondrial ribosome assembly. Functionally, the impairment in mitochondrial translation correlated with decreased interleukin-2 production in activated T cells. Altogether, these data show that SLP-2 acts as a general regulator of mitochondrial translation.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas , Linfocitos T/metabolismo , Animales , Activación de Linfocitos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética
5.
Neurogenetics ; 18(2): 97-103, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28058511

RESUMEN

Mitochondrial protein synthesis is initiated by formylated tRNA-methionine, which requires the activity of MTFMT, a methionyl-tRNA formyltransferase. Mutations in MTFMT have been associated with Leigh syndrome, early-onset mitochondrial leukoencephalopathy, microcephaly, ataxia, and cardiomyopathy. We identified compound heterozygous MTFMT mutations in a patient with a mild neurological phenotype and late-onset progressive visual impairment. MRI studies documented a progressive and selective involvement of the retrochiasmatic visual pathway. MTFMT was undetectable by immunoblot analysis of patient fibroblasts, resulting in specific defects in mitochondrial protein synthesis and assembly of the oxidative phosphorylation complexes. This report expands the clinical and MRI phenotypes associated with MTFMT mutations, illustrating the complexity of genotype-phenotype relationships in mitochondrial translation disorders.


Asunto(s)
Disfunción Cognitiva/genética , Transferasas de Hidroximetilo y Formilo/genética , Enfermedades Mitocondriales/genética , Trastornos de la Visión/genética , Disfunción Cognitiva/complicaciones , Análisis Mutacional de ADN , Femenino , Humanos , Enfermedades Mitocondriales/complicaciones , Fenotipo , Vías Visuales/metabolismo , Vías Visuales/patología , Adulto Joven
6.
Hum Mol Genet ; 24(10): 2841-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652405

RESUMEN

Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.


Asunto(s)
Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación , Biosíntesis de Proteínas/genética , ARN Nucleotidiltransferasas/genética , ARN de Transferencia de Serina/metabolismo , Niño , Preescolar , Exoma , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Análisis de Secuencia de ADN , Síndrome
7.
J Med Genet ; 52(3): 203-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25604084

RESUMEN

BACKGROUND: We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. METHODS AND RESULTS: Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly of the holoenzyme. Whole exome sequencing identified compound heterozygous mutations (c.199dupC, c.215A>G) in COA3, a small inner membrane COX assembly factor, resulting in a pronounced decrease in the steady-state levels of COA3 protein. Retroviral expression of a wild-type COA3 cDNA completely rescued the COX assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1 and other COX assembly factors including COX14 (C12orf62), another single pass transmembrane protein that also plays a role in coupling COX1 synthesis with holoenzyme assembly. Immunoblot analysis showed that COX14 was undetectable in COA3 subject fibroblasts, and that COA3 was undetectable in fibroblasts from a COX14 subject, demonstrating the interdependence of these two COX assembly factors. CONCLUSIONS: The mild clinical course in this patient contrasts with nearly all other cases of severe COX assembly defects that are usually fatal early in life, and underscores the marked tissue-specific involvement in mitochondrial diseases.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Obesidad/genética , Adulto , Preescolar , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , Deficiencia de Citocromo-c Oxidasa/patología , Enanismo/genética , Enanismo/patología , Complejo IV de Transporte de Electrones/genética , Ejercicio Físico/fisiología , Exoma , Femenino , Fibroblastos , Regulación Enzimológica de la Expresión Génica , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas Mitocondriales/biosíntesis , Obesidad/patología
8.
Hum Mol Genet ; 24(2): 480-91, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25214534

RESUMEN

French Canadian Leigh Syndrome (LSFC) is an early-onset, progressive neurodegenerative disorder with a distinct pattern of tissue involvement. Most cases are caused by a founder missense mutation in LRPPRC. LRPPRC forms a ribonucleoprotein complex with SLIRP, another RNA-binding protein, and this stabilizes polyadenylated mitochondrial mRNAs. LSFC fibroblasts have reduced levels of LRPPRC and a specific complex IV assembly defect; however, further depletion of mutant LRPPRC results in a complete failure to assemble a functional oxidative phosphorylation system, suggesting that LRPPRC levels determine the nature of the biochemical phenotype. We tested this hypothesis in cultured muscle cells and tissues from LSFC patients. LRPPRC levels were reduced in LSFC muscle cells, resulting in combined complex I and IV deficiencies. A similar combined deficiency was observed in skeletal muscle. Complex IV was only moderately reduced in LSFC heart, but was almost undetectable in liver. Both of these tissues showed elevated levels of complexes I and III. Despite the marked biochemical differences, the steady-state levels of LRPPRC and mitochondrial mRNAs were extremely low, LRPPRC was largely detergent-insoluble, and SLIRP was undetectable in all LSFC tissues. The level of the LRPPRC/SLIRP complex appeared much reduced in control tissues by the first dimension blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis compared with fibroblasts, and even by second dimension analysis it was virtually undetectable in control heart. These results point to tissue-specific pathways for the post-transcriptional handling of mitochondrial mRNAs and suggest that the biochemical defects in LSFC reflect the differential ability of tissues to adapt to the mutation.


Asunto(s)
Enfermedad de Leigh/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Cultivadas , Humanos , Enfermedad de Leigh/genética , Hígado/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Especificidad de Órganos , Fosforilación Oxidativa , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
9.
Hum Mutat ; 34(10): 1366-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878101

RESUMEN

Isolated cytochrome c oxidase (COX) deficiency is a common cause of mitochondrial disease, yet its genetic basis remains unresolved in many patients. Here, we identified novel compound heterozygous mutations in SCO1 (p.M294V, p.Val93*) in one such patient with fatal encephalopathy. The patient lacked the severe hepatopathy (p.P174L) or hypertrophic cardiomyopathy (p.G132S) observed in previously reported SCO1 cases, so we investigated whether allele-specific defects in SCO1 function might underlie the genotype-phenotype relationships. Fibroblasts expressing p.M294V had a relatively modest decrease in COX activity compared with those expressing p.P174L, whereas both SCO1 lines had marked copper deficiencies. Overexpression of known pathogenic variants in SCO1 fibroblasts showed that p.G132S exacerbated the COX deficiency, whereas COX activity was partially or fully restored by p.P174L and p.M294V, respectively. These data suggest that the clinical phenotypes in SCO1 patients might reflect the residual capacity of the pathogenic alleles to perform one or both functions of SCO1.


Asunto(s)
Acidosis Láctica/genética , Proteínas de la Membrana/genética , Mutación , Atrofias Olivopontocerebelosas/genética , Acidosis Láctica/metabolismo , Alelos , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Resultado Fatal , Orden Génico , Humanos , Lactante , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares , Datos de Secuencia Molecular , Atrofias Olivopontocerebelosas/metabolismo , Alineación de Secuencia
10.
Cell ; 151(7): 1528-41, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260140

RESUMEN

Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Citosol/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Mitocondrias/química , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Biosíntesis de Proteínas
11.
Am J Hum Genet ; 90(1): 142-51, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22243966

RESUMEN

We investigated a family in which the index subject presented with severe congenital lactic acidosis and dysmorphic features associated with a cytochrome c oxidase (COX)-assembly defect and a specific decrease in the synthesis of COX I, the subunit that nucleates COX assembly. Using a combination of microcell-mediated chromosome transfer, homozygosity mapping, and transcript profiling, we mapped the gene defect to chromosome 12 and identified a homozygous missense mutation (c.88G>A) in C12orf62. C12orf62 was not detectable by immunoblot analysis in subject fibroblasts, and retroviral expression of the wild-type C12orf62 cDNA rescued the biochemical phenotype. Furthermore, siRNA-mediated knockdown of C12orf 62 recapitulated the biochemical defect in control cells and exacerbated it in subject cells. C12orf62 is apparently restricted to the vertebrate lineage. It codes for a very small (6 kDa), uncharacterized, single-transmembrane protein that localizes to mitochondria and elutes in a complex of ∼110 kDa by gel filtration. COX I, II, and IV coimmunoprecipated with an epitope-tagged version of C12orf62, and 2D blue-native-polyacrylamide-gel-electrophoresis analysis of newly synthesized mitochondrial COX subunits in subject fibroblasts showed that COX assembly was impaired and that the nascent enzyme complex was unstable. We conclude that C12orf62 is required for coordination of the early steps of COX assembly with the synthesis of COX I.


Asunto(s)
Acidosis Láctica/genética , Ciclooxigenasa 1/biosíntesis , Complejo IV de Transporte de Electrones/biosíntesis , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación Missense , Resultado Fatal , Femenino , Fibroblastos/enzimología , Homocigoto , Humanos , Recién Nacido , Mitocondrias/enzimología , Mitocondrias/genética
12.
Eur J Hum Genet ; 19(3): 275-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21119709

RESUMEN

The mitochondrial translation system is responsible for the synthesis of 13 proteins required for oxidative phosphorylation (OXPHOS), the major energy-generating process of our cells. Mitochondrial translation is controlled by various nuclear encoded proteins. In 27 patients with combined OXPHOS deficiencies, in whom complex II (the only complex that is entirely encoded by the nuclear DNA) showed normal activities, and mutations in the mitochondrial genome as well as polymerase gamma were excluded, we screened all mitochondrial translation factors for mutations. Here, we report a mutation in mitochondrial elongation factor G1 (GFM1) in a patient affected by severe, rapidly progressive mitochondrial encephalopathy. This mutation is predicted to result in an Arg250Trp substitution in subdomain G' of the elongation factor G1 protein and is presumed to hamper ribosome-dependent GTP hydrolysis. Strikingly, the decrease in enzyme activities of complex I, III and IV detected in patient fibroblasts was not found in muscle tissue. The OXPHOS system defects and the impairment in mitochondrial translation in fibroblasts were rescued by overexpressing wild-type GFM1, establishing the GFM1 defect as the cause of the fatal mitochondrial disease. Furthermore, this study evinces the importance of a thorough diagnostic biochemical analysis of both muscle tissue and fibroblasts in patients suspected to suffer from a mitochondrial disorder, as enzyme deficiencies can be selectively expressed.


Asunto(s)
Fibroblastos/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Factor G de Elongación Peptídica/genética , Células Cultivadas , Preescolar , Epilepsia/genética , Femenino , Humanos , Lactante , Mitocondrias/genética , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/metabolismo , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas , Conformación Proteica
13.
Am J Hum Genet ; 87(1): 115-22, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20598281

RESUMEN

We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using homozygosity mapping, we identified a 1 bp deletion in C12orf65 in one patient, and DNA sequence analysis showed a different 1 bp deletion in the second patient. Both mutations predict the same premature stop codon. C12orf65 belongs to a family of four mitochondrial class I peptide release factors, which also includes mtRF1a, mtRF1, and Ict1, all characterized by the presence of a GGQ motif at the active site. However, C12orf65 does not exhibit peptidyl-tRNA hydrolase activity in an in vitro assay with bacterial ribosomes. We suggest that it might play a role in recycling abortive peptidyl-tRNA species, released from the ribosome during the elongation phase of translation.


Asunto(s)
Enfermedad de Leigh/genética , Mitocondrias/metabolismo , Oftalmoplejía/genética , Atrofia Óptica/genética , Factores de Terminación de Péptidos/genética , Células Cultivadas , Niño , Preescolar , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Enfermedad de Leigh/metabolismo , Masculino , Mitocondrias/genética , Proteínas Mitocondriales , Mutación , Oftalmoplejía/metabolismo , Atrofia Óptica/metabolismo , Fosforilación Oxidativa , Linaje , Factores de Elongación de Péptidos/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Adulto Joven
14.
Nat Genet ; 41(7): 833-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19503089

RESUMEN

Defects in mitochondrial translation are among the most common causes of mitochondrial disease, but the mechanisms that regulate mitochondrial translation remain largely unknown. In the yeast Saccharomyces cerevisiae, all mitochondrial mRNAs require specific translational activators, which recognize sequences in 5' UTRs and mediate translation. As mammalian mitochondrial mRNAs do not have significant 5' UTRs, alternate mechanisms must exist to promote translation. We identified a specific defect in the synthesis of the mitochondrial DNA (mtDNA)-encoded COX I subunit in a pedigree segregating late-onset Leigh syndrome and cytochrome c oxidase (COX) deficiency. We mapped the defect to chromosome 17q by functional complementation and identified a homozygous single-base-pair insertion in CCDC44, encoding a member of a large family of hypothetical proteins containing a conserved DUF28 domain. CCDC44, renamed TACO1 for translational activator of COX I, shares a notable degree of structural similarity with bacterial homologs, and our findings suggest that it is one of a family of specific mammalian mitochondrial translational activators.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Enfermedad de Leigh/genética , Proteínas de Microfilamentos/genética , Cromosomas Humanos Par 17 , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Repeticiones de Microsatélite , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...