Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gels ; 10(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39057473

RESUMEN

Cell-cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell-cell communication of the fibroblast-macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond.

2.
Adv Healthc Mater ; : e2304157, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870600

RESUMEN

For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4ß1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.

3.
J Control Release ; 369: 404-419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508528

RESUMEN

Neurotrophic growth factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been considered as potential therapeutic candidates for neurodegenerative disorders due to their important role in modulating the growth and survival of neurons. However, clinical translation remains elusive, as their large size hinders translocation across the blood-brain barrier (BBB), and their short half-life in vivo necessitates repeated administrations. Local delivery to the brain offers a potential route to the target site but requires a suitable drug-delivery system capable of releasing these proteins in a controlled and sustained manner. Herein, we develop a cryogel microcarrier delivery system which takes advantage of the heparin-binding properties of GDNF and BDNF, to reversibly bind/release these growth factors via electrostatic interactions. Droplet microfluidics and subzero temperature polymerization was used to create monodisperse cryogels with varying degrees of negative charge and an average diameter of 20 µm. By tailoring the inclusion of 3-sulfopropyl acrylate (SPA) as a negatively charged moiety, the release duration of these two growth factors could be adjusted to range from weeks to half a year. 80% SPA cryogels and 20% SPA cryogels were selected to load GDNF and BDNF respectively, for the subsequent biological studies. Cell culture studies demonstrated that these cryogel microcarriers were cytocompatible with neuronal and microglial cell lines, as well as primary neural cultures. Furthermore, in vivo studies confirmed their biocompatibility after administration into the brain, as well as their ability to deliver, retain and release GDNF and BDNF in the striatum. Overall, this study highlights the potential of using cryogel microcarriers for long-term delivery of neurotrophic growth factors to the brain for neurodegenerative disorder therapeutics.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Encéfalo , Criogeles , Factor Neurotrófico Derivado de la Línea Celular Glial , Criogeles/química , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Liberación de Fármacos , Preparaciones de Acción Retardada , Ratas Sprague-Dawley , Humanos , Masculino , Ratas
4.
Adv Healthc Mater ; 13(18): e2400388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38465502

RESUMEN

Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Hidrogeles/química , Técnicas de Cocultivo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Pericitos/citología , Pericitos/metabolismo , Pericitos/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Células Endoteliales/citología , Células Endoteliales/metabolismo
5.
J Control Release ; 368: 344-354, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417559

RESUMEN

Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.


Asunto(s)
Coagulación Sanguínea , Polímeros , Humanos , Polímeros/química , Heparina/química , Anticoagulantes/farmacología , Estireno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...