Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
ACS Appl Mater Interfaces ; 13(22): 25589-25598, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34032413

RESUMEN

The extracellular microenvironment is an important regulator of cell functions. Numerous structural cues present in the cellular microenvironment, such as ligand distribution and substrate topography, have been shown to influence cell behavior. However, the roles of these cues are often studied individually using simplified, single-cue platforms that lack the complexity of the three-dimensional, multi-cue environment cells encounter in vivo. Developing ways to bridge this gap, while still allowing mechanistic investigation into the cellular response, represents a critical step to advance the field. Here, we present a new approach to address this need by combining optics-based protein patterning and lithography-based substrate microfabrication, which enables high-throughput investigation of complex cellular environments. Using a contactless and maskless UV-projection system, we created patterns of extracellular proteins (resembling contact-guidance cues) on a two-and-a-half-dimensional (2.5D) cell culture chip containing a library of well-defined microstructures (resembling topographical cues). As a first step, we optimized experimental parameters of the patterning protocol for the patterning of protein matrixes on planar and non-planar (2.5D cell culture chip) substrates and tested the technique with adherent cells (human bone marrow stromal cells). Next, we fine-tuned protein incubation conditions for two different vascular-derived human cell types (myofibroblasts and umbilical vein endothelial cells) and quantified the orientation response of these cells on the 2.5D, physiologically relevant multi-cue environments. On concave, patterned structures (curvatures between κ = 1/2500 and κ = 1/125 µm-1), both cell types predominantly oriented in the direction of the contact-guidance pattern. In contrast, for human myofibroblasts on micropatterned convex substrates with higher curvatures (κ ≥ 1/1000 µm-1), the majority of cells aligned along the longitudinal direction of the 2.5D features, indicating that these cells followed the structural cues from the substrate curvature instead. These findings exemplify the potential of this approach for systematic investigation of cellular responses to multiple microenvironmental cues.


Asunto(s)
Microambiente Celular , Células Endoteliales/fisiología , Células Madre Mesenquimatosas/fisiología , Miofibroblastos/fisiología , Proteínas/química , Venas Umbilicales/fisiología , Adhesión Celular , Comunicación Celular , Movimiento Celular , Células Endoteliales/citología , Humanos , Células Madre Mesenquimatosas/citología , Miofibroblastos/citología , Propiedades de Superficie , Venas Umbilicales/citología
3.
Materials (Basel) ; 13(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098110

RESUMEN

Geometrical cues provided by the intrinsic architecture of tissues and implanted biomaterials have a high relevance in controlling cellular behavior. Knowledge of how cells sense and subsequently respond to complex geometrical cues of various sizes and origins is needed to understand the role of the architecture of the extracellular environment as a cell-instructive parameter. This is of particular interest in the field of tissue engineering, where the success of scaffold-guided tissue regeneration largely depends on the formation of new tissue in a native-like organization in order to ensure proper tissue function. A well-considered internal scaffold design (i.e., the inner architecture of the porous structure) can largely contribute to the desired cell and tissue organization. Advances in scaffold production techniques for tissue engineering purposes in the last years have provided the possibility to accurately create scaffolds with defined macroscale external and microscale internal architectures. Using the knowledge of how cells sense geometrical cues of different size ranges can drive the rational design of scaffolds that control cellular and tissue architecture. This concise review addresses the recently gained knowledge of the sensory mechanisms of cells towards geometrical cues of different sizes (from the nanometer to millimeter scale) and points out how this insight can contribute to informed architectural scaffold designs.

4.
Adv Biosyst ; 3(10): e1900080, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-32648723

RESUMEN

Adherent cells residing within tissues or biomaterials are presented with 3D geometrical cues from their environment, often in the form of local surface curvatures. While there is growing evidence that cellular decision-making is influenced by substrate curvature, the effect of physiologically relevant, cell-scale anisotropic curvatures remains poorly understood. This study systematically explores the migration behavior of human bone marrow stromal cells (hBMSCs) on a library of anisotropic curved structures. Analysis of cell trajectories reveals that, on convex cylindrical structures, hBMSC migration speed and persistence are strongly governed by the cellular orientation on the curved structure, while migration on concave cylindrical structures is characterized by fast but non-aligned and non-persistent migration. Concurrent presentation of concave and convex substrates on toroidal structures induces migration in the direction where hBMSCs can most effectively avoid cell bending. These distinct migration behaviors are found to be universally explained by the cell-perceived substrate curvature, which on anisotropic curved structures is dependent on both the temporally varying cell orientation and the 3D cellular morphology. This work demonstrates that cell migration is dynamically guided by the perceived curvature of the underlying substrate, providing an important biomaterial design parameter for instructing cell migration in tissue engineering and regenerative medicine.


Asunto(s)
Movimiento Celular/fisiología , Células Madre Mesenquimatosas , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Propiedades de Superficie , Factores de Tiempo , Análisis de Matrices Tisulares
5.
J R Soc Interface ; 15(145)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089684

RESUMEN

The intrinsic architecture of biological tissues and of implanted biomaterials provides cells with large-scale geometrical cues. To understand how cells are able to sense and respond to complex structural environments, a deeper insight into the cellular response to multi-scale and conflicting geometrical cues is needed. In this study, we subjected human bone marrow stromal cells (hBMSCs) to mesoscale cylindrical surfaces (diameter 250-5000 µm) and nanoscale collagen fibrils (diameter 100-200 nm) that were aligned perpendicular to the cylinder axis. On flat surfaces and at low substrate curvatures (cylinder diameter d > 1000 µm), cell alignment and migration were governed by the nanoscale collagen fibrils, consistent with the contact guidance effect. With increasing surface curvature (decreasing cylinder diameter, d < 1000 µm), cells increasingly aligned and migrated along the cylinder axis, i.e. the direction of zero curvature. An increase in phosphorylated myosin light chain levels was observed with increasing substrate curvature, suggesting a link between substrate-induced cell bending and the F-actin-myosin machinery. Taken together, this work demonstrates that geometrical cues of up to 10× cell size can play a dominant role in directing hBMSC alignment and migration and that the effect of nanoscale contact guidance can even be overruled by mesoscale curvature guidance.


Asunto(s)
Células de la Médula Ósea/metabolismo , Movimiento Celular , Colágeno/química , Actinas/metabolismo , Células de la Médula Ósea/citología , Humanos , Masculino , Persona de Mediana Edad , Miosinas/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Propiedades de Superficie
6.
Biofabrication ; 9(2): 025001, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28402967

RESUMEN

Reproduction of the anatomical structures and functions of tissues using cells and designed 3D scaffolds is an ongoing challenge. For this, scaffolds with appropriate biomorphic surfaces promoting cell attachment, proliferation and differentiation are needed. In this study, eight triply-periodic minimal surface (TPMS)-based scaffolds were designed using specific trigonometric equations, providing the same porosity and the same number of unit cells, while presenting different surface curvatures. The scaffolds were fabricated by stereolithography using a photocurable resin based on the biocompatible, biodegradable and rubber-like material, poly(trimethylene carbonate) (PTMC). A numerical approach was developed to calculate the surface curvature distributions of the TPMS architectures. Moreover, the scaffolds were characterized by scanning electron microscopy, micro-computed tomography and water permeability measurements. These original scaffold architectures will be helpful to decipher the biofunctional role of the surface curvature of scaffolds intended for tissue engineering applications.


Asunto(s)
Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Dioxanos/química , Microscopía Electrónica de Rastreo , Modelos Teóricos , Distribución Normal , Permeabilidad , Porosidad , Reproducibilidad de los Resultados , Propiedades de Superficie , Agua , Microtomografía por Rayos X
7.
Adv Sci (Weinh) ; 4(2): 1600347, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28251054

RESUMEN

Signals from the microenvironment around a cell are known to influence cell behavior. Material properties, such as biochemical composition and substrate stiffness, are today accepted as significant regulators of stem cell fate. The knowledge of how cell behavior is influenced by 3D geometric cues is, however, strongly limited despite its potential relevance for the understanding of tissue regenerative processes and the design of biomaterials. Here, the role of surface curvature on the migratory and differentiation behavior of human mesenchymal stem cells (hMSCs) has been investigated on 3D surfaces with well-defined geometric features produced by stereolithography. Time lapse microscopy reveals a significant increase of cell migration speed on concave spherical compared to convex spherical structures and flat surfaces resulting from an upward-lift of the cell body due to cytoskeletal forces. On convex surfaces, cytoskeletal forces lead to substantial nuclear deformation, increase lamin-A levels and promote osteogenic differentiation. The findings of this study demonstrate a so far missing link between 3D surface curvature and hMSC behavior. This will not only help to better understand the role of extracellular matrix architecture in health and disease but also give new insights in how 3D geometries can be used as a cell-instructive material parameter in the field of biomaterial-guided tissue regeneration.

8.
Mol Ecol ; 25(20): 4984-5000, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27543765

RESUMEN

Functional connectivity is essential for the long-term persistence of populations. However, many studies assess connectivity with a focus on structural connectivity only. Cityscapes, namely urban landscapes, are particularly dynamic and include numerous potential anthropogenic barriers to animal movements, such as roads, traffic or buildings. To assess and compare structural connectivity of habitats and functional connectivity of gene flow of an urban lizard, we here combined species distribution models (SDMs) with an individual-based landscape genetic optimization procedure. The most important environmental factors of the SDMs are structural diversity and substrate type, with high and medium levels of structural diversity as well as open and rocky/gravel substrates contributing most to structural connectivity. By contrast, water cover was the best model of all environmental factors following landscape genetic optimization. The river is thus a major barrier to gene flow, while of the typical anthropogenic factors only buildings showed an effect. Nonetheless, using SDMs as a basis for landscape genetic optimization provided the highest ranked model for functional connectivity. Optimizing SDMs in this way can provide a sound basis for models of gene flow of the cityscape, and elsewhere, while presence-only and presence-absence modelling approaches showed differences in performance. Additionally, interpretation of results based on SDM factor importance can be misleading, dictating more thorough analyses following optimization of SDMs. Such approaches can be adopted for management strategies, for example aiming to connect native common wall lizard populations or disconnect them from non-native introduced populations, which are currently spreading in many cities in Central Europe.


Asunto(s)
Ecosistema , Flujo Génico , Genética de Población , Lagartos/genética , Distribución Animal , Animales , Ciudades , Conservación de los Recursos Naturales , Genotipo , Alemania , Repeticiones de Microsatélite , Modelos Genéticos , Dinámica Poblacional , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...