Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 20(8): e13446, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34327811

RESUMEN

The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T-complex protein-1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.


Asunto(s)
Chaperonas Moleculares/genética , Agregado de Proteínas/genética , Proteostasis/genética , Células Madre/metabolismo , Arabidopsis , Diferenciación Celular
2.
Planta ; 253(2): 27, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420666

RESUMEN

MAIN CONCLUSION: Inducible lineage analysis and cell ablation via conditional toxin expression in cells expressing the DORNRÖSCHEN-LIKE transcription factor represent an effective and complementary adjunct to conventional methods of functional gene analysis. Classical methods of functional gene analysis via mutational and expression studies possess inherent limitations, and therefore, the function of a large proportion of transcription factors remains unknown. We have employed two complementary, indirect methods to obtain functional information for the AP2/ERF transcription factor DORNRÖSCHEN-LIKE (DRNL), which is dynamically expressed in flowers and marks lateral organ founder cells. An inducible, two-component Cre-Lox system was used to express beta-glucuronidase GUS in cells expressing DRNL, to perform a sector analysis that reveals lineages of cells that transiently expressed DRNL throughout plant development. In a complementary approach, an inducible system was used to ablate cells expressing DRNL using diphtheria toxin A chain, to visualise the phenotypic consequences. These complementary analyses demonstrate that DRNL functionally marks founder cells of leaves and floral organs. Clonal sectors also included the vasculature of the leaves and petals, implicating a previously unidentified role for DRNL in provasculature development, which was confirmed in cotyledons by closer analysis of drnl mutants. Our findings demonstrate that inducible gene-specific lineage analysis and cell ablation via conditional toxin expression represent an effective and informative adjunct to conventional methods of functional gene analysis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Desarrollo de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Desarrollo de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Gene Expr Patterns ; 38: 119150, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065216

RESUMEN

Phylogenetic shadowing and chromatin accessibility data suggested that essential regulatory elements are absent in the 2.9 kb immediate upstream region of the published WOX4pro::YFP cambium marker. Inclusion of an additional 6.3 kb of upstream promoter sequence and confocal imaging with different fluorophores in transgenic Arabidopsis lines revealed a much wider cell-type-specific expression pattern in parenchymous cells of the aerial plant body. The previously demonstrated activity of the WOX4pro::YFP marker in the cambium of vascular strands in the young Arabidopsis inflorescence stem depicts only sectors of a circular subcortical layer of parenchymous AtWOX4-positive cells. Transcription starts in subepidermal cells within the inflorescence apex in a phyllotactic pattern and extends into successively branching lateral organs, which are connected via small tube-like domains of AtWOX4-expressing cells with the circular subcortical parenchymal layer that extends basipetally down the stem. AtWOX4 expression is most dynamic in leaves, where promoter activity is observed transiently at the adaxial side of the lamina and remains detectable later in the palisade parenchyma, although at a weaker level than in the vasculature. In the root the extended AtWOX4 promoter is active through the proximal root meristem, i.e. in the quiescent centre (QC) and its surrounding initials, a pattern that is broader than transcription of its stem cell promoting relative AtWOX5 in the QC. Outside the proximal meristem AtWOX4 transcription is observed in upper cell layers of the columella root cap beneath or above within the stele in proto- and metaxylem cells, in a ribbon-type pattern which divides the central cylinder in two equal halves. This xylem-specific expression it the root stele relates to established AtWOX4 activity in xylem parenchyma specificity within vascular bundles of the stem.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Activación Transcripcional , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Cámbium/metabolismo , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas
4.
Planta ; 251(4): 90, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32236749

RESUMEN

MAIN CONCLUSION: The Arabidopsis DORNRÖSCHEN-LIKE enhancer 2 comprises a high-occupancy target region in the IM periphery that integrates signals for the spiral phyllotactic pattern and cruciferous arrangement of sepals. Transcription of the DORNRÖSCHEN-LIKE (DRNL) gene marks lateral organ founder cells (LOFCs) in the peripheral zone of the inflorescence meristem (IM) and enhancer 2 (En2) in the DRNL promoter upstream region essentially contributes to this phyllotactic transcription pattern. Further analysis focused on the phylogenetically highly conserved 100-bp En2core element, which was sufficient to promote the phyllotactic pattern, but was recalcitrant to further shortening. Here, we show that En2core functions independent of orientation and create a series of mutations to study consequences on the transcription pattern. Their analysis shows that, first, in addition to in the inflorescence apex, En2core acts in the embryo; second, cis-regulatory target sequences are distributed throughout the 100-bp element, although substantial differences exist in their function between embryo and IM. Third, putative core auxin response elements (AuxREs) spatially activate or restrict DRNL expression, and fourth, according to chromatin configuration data, En2core enhancer activity in LOFCs correlates with an open chromatin structure at the DRNL transcription start. In combination, mutational and chromatin analyses imply that En2core comprises a high-occupancy target (HOT) region for transcription factors, which implements phyllotactic information for the spiral LOFC pattern in the IM periphery and coordinates the cruciferous array of floral sepals. Our data disfavor a contribution of activating auxin response factors (ARFs) but do not exclude auxin as a morphogenetic signal.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Inflorescencia , Meristema , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/genética
6.
J Exp Bot ; 70(15): 3867-3879, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31037302

RESUMEN

Fluorescence-activated cell sorting (FACS) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were combined to analyse the chromatin state of lateral organ founder cells (LOFCs) in the peripheral zone of the Arabidopsis apetala1-1 cauliflower-1 double mutant inflorescence meristem. On a genome-wide level, we observed a striking correlation between transposase hypersensitive sites (THSs) detected by ATAC-seq and DNase I hypersensitive sites (DHSs). The mostly expanded DHSs were often substructured into several individual THSs, which correlated with phylogenetically conserved DNA sequences or enhancer elements. Comparing chromatin accessibility with available RNA-seq data, THS change configuration was reflected by gene activation or repression and chromatin regions acquired or lost transposase accessibility in direct correlation with gene expression levels in LOFCs. This was most pronounced immediately upstream of the transcription start, where genome-wide THSs were abundant in a complementary pattern to established H3K4me3 activation or H3K27me3 repression marks. At this resolution, the combined application of FACS/ATAC-seq is widely applicable to detect chromatin changes during cell-type specification and facilitates the detection of regulatory elements in plant promoters.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Meristema/metabolismo , Análisis de Secuencia de ADN/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/genética , Histonas/metabolismo , Meristema/genética
7.
Curr Top Dev Biol ; 131: 545-564, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30612629

RESUMEN

The goal of evolutionary developmental (evo-devo) biology compares inter-organism developmental processes to infer ancestral relationships and evolutionary adaptations. Frameworks to address macroevolutionary traits such as plant embryogenesis commonly involve two complementary approaches. Historically, focus has been placed on comparative morphology and histology, but more recently, accumulating genome data from diverse taxa have elicited the construction of molecular phylogenies, which aid the identification of gene homologies and orthologies that have been adaptive and that underlie differences in form. Distinguishing between ancestral or derived traits in phyletic or cladistic-driven approaches is challenging, but relates to the broader applicability of existing developmental models such as Arabidopsis thaliana.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/embriología , Filogenia , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Biología Evolutiva , Magnoliopsida/anatomía & histología , Magnoliopsida/genética , Semillas/genética
8.
Development ; 145(24)2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30446629

RESUMEN

Branching is a common feature of plant development. In seed plants, axillary meristems (AMs) initiate in leaf axils to enable lateral shoot branching. AM initiation requires a high level of expression of the meristem marker SHOOT MERISTEMLESS (STM) in the leaf axil. Here, we show that modules of interacting transcriptional regulators control STM expression and AM initiation. Two redundant AP2-type transcription factors, DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL), control AM initiation by regulating STM expression. DRN and DRNL directly upregulate STM expression in leaf axil meristematic cells, as does another transcription factor, REVOLUTA (REV). The activation of STM expression by DRN/DRNL depends on REV, and vice versa. DRN/DRNL and REV have overlapping expression patterns and protein interactions in the leaf axil, which are required for the upregulation of STM expression. Furthermore, LITTLE ZIPPER3, another REV-interacting protein, is expressed in the leaf axil and interferes with the DRN/DRNL-REV interaction to negatively modulate STM expression. Our results support a model in which interacting transcriptional regulators fine-tune the expression of STM to precisely regulate AM initiation. Thus, shoot branching recruits the same conserved protein complexes used in embryogenesis and leaf polarity patterning.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/ultraestructura , Modelos Biológicos , Mutación/genética , Hojas de la Planta/ultraestructura , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Tiempo
9.
BMC Genomics ; 17(1): 855, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27809788

RESUMEN

BACKGROUND: Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. RESULTS: Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. CONCLUSIONS: The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.


Asunto(s)
Brassica/genética , Inflorescencia/genética , Meristema/genética , Transcriptoma , Análisis por Conglomerados , Biología Computacional/métodos , Epigénesis Genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes Reporteros , Fenotipo , Células Vegetales/metabolismo , Procesamiento Postranscripcional del ARN
10.
Trends Plant Sci ; 21(9): 725-727, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27450629

RESUMEN

The shoot apical meristem provides a microenvironment that ensures stem cell fate and proliferation via homeostasis between WUSCHEL (WUS) activity and CLAVATA signalling. New data from maize and arabidopsis reveal that an evolutionarily conserved signal deriving from primordium cells links WUS transcription to the morphogenetic programme.


Asunto(s)
Diferenciación Celular/fisiología , Meristema/citología , Meristema/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
Mol Genet Genomics ; 291(5): 1835-49, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27277595

RESUMEN

The paralogous genes DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL) encode AP2-type transcription factors that are expressed and act cell-autonomously in the central stem-cell zone or lateral organ founder cells (LOFCs) in the peripheral zone of the Arabidopsis shoot meristem (SAM), but their molecular contribution is unknown. Here, we show using the Arabidopsis thaliana MERISTEM LAYER 1 promoter that DRN and DRNL share a common function in cell cycle progression and potentially provide local competence for G1-S transitions in the SAM. Analysis of double transgenic DRN::erGFP and DRNL::erCERULEAN promoter fusion lines suggests that the trajectory of this cellular competence starts with DRN activity in the central stem-cell zone and extends locally via DRNL activity into groups of founder cells at the IM or FM periphery. Our data support the scenario that after gene duplication, DRN and DRNL acquired different transcription domains within the shoot meristem, but retained protein function that affects cell cycle progression, either centrally in stem cells or peripherally in primordial founder cells, a finding that is of general relevance for meristem function.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Puntos de Control de la Fase G1 del Ciclo Celular , Técnicas de Inactivación de Genes , Meristema/citología , Meristema/genética , Meristema/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
12.
Mol Plant ; 9(7): 1028-39, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27109605

RESUMEN

Gene amplification followed by functional diversification is a major force in evolution. A typical example of this is seen in the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, named after the Arabidopsis stem cell regulator WUSCHEL. Here we analyze functional divergence in the WOX gene family. Members of the WUS clade, except the cambium stem cell regulator WOX4, can substitute for WUS function in shoot and floral stem cell maintenance to different degrees. Stem cell function of WUS requires a canonical WUS-box, essential for interaction with TPL/TPR co-repressors, whereas the repressive EAR domain is dispensable and the acidic domain seems only to be required for female fertility. In contrast to the WUS clade, members of the ancient WOX13 and the WOX9 clades cannot support stem cell maintenance. Although the homeodomains are interchangeable between WUS and WOX9 clade members, a WUS-compatible homeodomain together with canonical WUS-box is not sufficient for stem cell maintenance. Our results suggest that WOX function in shoot and floral meristems of Arabidopsis is restricted to the modern WUS clade, suggesting that stem cell control is a derived function. Yet undiscovered functional domains in addition to the homeodomain and the WUS-box are necessary for this function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Células Madre/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/metabolismo , Células Madre/fisiología
13.
J Exp Bot ; 67(1): 143-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26428063

RESUMEN

Transcription of the DORNRÖSCHEN (DRNL) promoter marks lateral-organ founder cells throughout Arabidopsis development, from cotyledons to flowers or floral organs. In the inflorescence apex, DRNL::GFP depicts incipient floral phyllotaxy, and organs in the four floral whorls are differentially prepatterned: the sepals unidirectionally along an abaxial-adaxial axis, the four petals and two lateral stamens in two putative morphogenetic fields, and the medial stamens subsequently in a ring-shaped domain, before two groups of carpel founder cells are specified. The dynamic DRNL transcription pattern is controlled by three enhancer elements, which redundantly and synergistically control qualitative or quantitative aspects of expression, and differentially integrate the auxin response in Arabidopsis inflorescence and floral meristems. The high sequence conservation of all three enhancer elements among the Brassicaceae is striking, which suggests that densely packed cis-regulatory elements are conserved to recruit multiple transcription factors, including auxin response factors, into higher-order enhanceosome complexes. The spatial organization of the enhancers is also conserved, by a microsynteny that extends beyond the Brassicaceae, which relates to enhancer sharing, as the distal element En1 bidirectionally serves DRNL and the upstream At1g24600 gene; the genes are transcribed in opposite directions and possibly comprise a conserved functional chromatin domain.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Inflorescencia/crecimiento & desarrollo , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , Inflorescencia/genética , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/metabolismo
14.
Trends Plant Sci ; 20(5): 291-300, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25805047

RESUMEN

Auxin and cytokinin affect cell fate specification transcriptionally and non-transcriptionally, and their roles have been characterised in several founder cell specification and activation contexts. Similarly to auxin, local cytokinin synthesis and response gradients are instructive, and the roles of ARABIDOPSIS RESPONSE REGULATOR 7/15 (ARR7/15) and the negative cytokinin response regulator ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6, as well as auxin signalling via MONOPTEROS/BODENLOS, are functionally conserved across different developmental processes. Auxin and cytokinin crosstalk is tissue- and context-specific, and may be synergistic in the shoot apical meristem (SAM) but antagonistic in the root. We review recent advances in understanding the interactions between auxin and cytokinin in pivotal developmental processes, and show that feedback complexity and the multistep nature of specification processes argue against a single morphogenetic signal.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
15.
Development ; 141(8): 1660-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715456

RESUMEN

Many differentiated plant cells can dedifferentiate into stem cells, reflecting the remarkable developmental plasticity of plants. In the moss Physcomitrella patens, cells at the wound margin of detached leaves become reprogrammed into stem cells. Here, we report that two paralogous P. patens WUSCHEL-related homeobox 13-like (PpWOX13L) genes, homologs of stem cell regulators in flowering plants, are transiently upregulated and required for the initiation of cell growth during stem cell formation. Concordantly, Δppwox13l deletion mutants fail to upregulate genes encoding homologs of cell wall loosening factors during this process. During the moss life cycle, most of the Δppwox13l mutant zygotes fail to expand and initiate an apical stem cell to form the embryo. Our data show that PpWOX13L genes are required for the initiation of cell growth specifically during stem cell formation, in analogy to WOX stem cell functions in seed plants, but using a different cellular mechanism.


Asunto(s)
Bryopsida/citología , Bryopsida/genética , Genes de Plantas/genética , Hojas de la Planta/citología , Proteínas de Plantas/genética , Protoplastos/citología , Células Madre/citología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/crecimiento & desarrollo , Proliferación Celular , Pared Celular/genética , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Regeneración , Células Madre/metabolismo , Regulación hacia Arriba/genética , Cigoto/citología , Cigoto/crecimiento & desarrollo
16.
New Phytol ; 199(4): 1081-1092, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23721178

RESUMEN

Evolutionary studies addressing plant architecture have uncovered several significant dichotomies between lower and higher land plant radiations, which are based on differences in meristem histology and function. Here, we assess the establishment of different stem cell niches during land plant evolution based on genes of the stem cell-promoting WUSCHEL (WUS) clade of the WOX (WUSCHEL-related homeobox) gene family. WOX gene orthology was addressed by phylogenetic analyses of full-length WOX protein sequences and cellular expression pattern studies indicate process homology. Gene amplifications in the WUS clade were present in the last common ancestor (LCA) of extant gymnosperms and angiosperms. Whereas the evolution of complex multicellular shoot and root meristems relates to members in the WUS/WOX5 sub-branch, the evolution of marginal and plate meristems or the vascular cambium is associated with gene duplications that gave rise to WOX3 and WOX4, respectively. A fourth WUS clade member, WOX2, was apparently recruited for apical cell fate specification during early embryogenesis. The evolution and functional interplay of WOX3 and WOX4 possibly promoted a novel mode of leaf development, and evolutionary adaptations in their activities have contributed to the great diversity in shape and architecture of leaves in seed plants.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Nicho de Células Madre , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Haz Vascular de Plantas/metabolismo , Homología de Secuencia de Aminoácido
17.
Plant Mol Biol ; 78(1-2): 123-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22076631

RESUMEN

The growth of land plants depends on stem cell-containing meristems which show major differences in their architecture from basal to higher plant species. In Arabidopsis, the stem cell niches in the shoot and root meristems are promoted by WUSCHEL (WUS) and WOX5, respectively. Both genes are members of a non-ancestral clade of the WUS-related homeobox (WOX) gene family, which is absent in extant bryophytes and lycophytes. Our analyses of five fern species suggest that a single WUS orthologue was present in the last common ancestor (LCA) of leptosporangiate ferns and seed plants. In the extant fern Ceratopteris richardii, the WUS pro-orthologue marks the pluripotent cell fate of immediate descendants of the root apical initial, so-called merophytes, which undergo a series of stereotypic cell divisions and give rise to all cell types of the root except the root cap. The invention of a WUS-like function within the WOX gene family in an ancestor of leptosporangiate ferns and seed plants and its amplification and sub-functionalisation to different stem cell niches might relate to the success of seed plants, especially angiosperms.


Asunto(s)
Helechos/genética , Proteínas de Homeodominio/genética , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Células Madre/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Evolución Molecular , Helechos/citología , Helechos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/clasificación , Hibridación in Situ , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Datos de Secuencia Molecular , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/clasificación , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Plantas/clasificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Nicho de Células Madre/genética
18.
Plant Signal Behav ; 6(8): 1244-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21758017

RESUMEN

Positional signals that specify founder cells and determine where lateral organs initiate and how these signals are perceived by cells that transition to the periphery of the meristem is a challenging problem. We recently showed that expression of the AP2 ERF transcription factor Dornröschen-like (DRNL) marks all floral organ founder cells and pre-patterns lateral stamen and petal, or medial stamen founder cells by two regions of expression that we propose represent morphogenetic fields, that subsequently resolve into discrete foci. The spatio-temporal expression pattern of DRNL allows speculation concerning evolutionary aspects of plant developmental biology and the control of the floral plant body. It further paves the way to use DRNL as a tool to address fundamental questions of cell type specification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Evolución Biológica , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
19.
Plant Mol Biol ; 76(1-2): 171-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21547450

RESUMEN

Live imaging during floral development revealed that expression of the DORNRÖSCHEN-LIKE (DRNL) gene encoding an AP2-like transcription factor, marks all organ founder cells. Transcription precedes the perception of auxin response maxima as measured by the DR5 reporter and is unaffected in early organogenesis, by mutation of four canonical auxin response elements (AuxREs) in the DRNL promoter. DRNL expression identifies discrete modes of organ initiation in the four floral whorls, from individual or pairs of organ anlagen in the outer whorl of sepals to two morphogenetic fields pre-patterning petals and lateral stamens, or a ring-shaped field giving rise to the medial stamens before carpel primordia are specified. DRNL function only overlaps in the central stem cell zone with that of its paralogue, DORNRÖSCHEN (DRN). drnl mutants are affected in floral organ outgrowth, which functionally interplays with boundary specification as organ fusions are sensitized by loss of CUP-SHAPED COTYLEDON (CUC) gene activity, and synergistic interactions exist with mutants in local auxin biosynthesis and polar transport. DRNL apparently monitors and contributes to cellular decisions in the SAM and thus provides a novel molecular access to the interplay of founder cell specification, organ anlage and organogenesis in the SAM peripheral zone.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microscopía Confocal , Mutación , Factores de Transcripción/genética
20.
Plant Mol Biol ; 75(3): 223-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21161330

RESUMEN

DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL) encode AP2-domain transcription factors, which act redundantly in cotyledon organogenesis. A more detailed genetic study now integrates DRN and DRNL into the CUP-SHAPED COTYLEDON (CUC) regulatory network and places DRN and DRNL differentially within the auxin signalling network: DRNL function overlaps with that of PIN-FORMED1, and DRN with PINOID. DRN and DRNL act cell-autonomously and are co-expressed in the early globular embryo, whereas expression patterns diverge during later stages of embryogeny. Both genes synergize to provide essential patterning information in the apical embryo domain, to establish correct CUC, SHOOTMERISTEMLESS and WUSCHEL expression domains, which relates to the patterning of SAM anlagen to a central apical position to create two planes of bilateral symmetry in wild type Arabidopsis thaliana embryos.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Tipificación del Cuerpo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Mutación , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...