Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(25): 32874-32885, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863159

RESUMEN

Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tg and Tm are below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology.

2.
Rev Sci Instrum ; 93(6): 063906, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778026

RESUMEN

Grazing incidence x-ray diffraction (GIXD) is a frequently used tool for the crystallographic characterization of thin films in terms of polymorph identification and determination of the crystallographic lattice parameters. Even full structure solutions are possible. To obtain highly accurate diffraction patterns, the thin film sample has to be aligned carefully with the center of the goniometer, which allows a defined incidence of the primary x-ray beam relative to the sample surface. This work studies the effect of misalignment of a thin film sample on the acquired diffraction pattern. Three potential types of misalignments are considered: the deviation of the sample surface from the center of the goniometer, an error in the incidence angle of the primary beam, and an inclination of the goniometer rotation axis from the normal of the substrate surface. The consequence of these types of sample misalignments is the shift of diffraction peaks toward specific directions in reciprocal space. Mathematical equations are given that relate the error in positions of Bragg peaks for each type of sample misalignment. Experiments with intentionally misaligned samples confirm the given formulas. In a subsequent step, the errors in the peak positions are translated to systematic errors in the estimation of the unit cell parameters. Depending on the type of misalignment, some alignment errors can be reduced or even corrected; in particular, azimuthal sample rotations prove to be advantageous in these cases. The results in this work improve the quality of GIXD measurements, in general, enabling deeper analysis like the full structure solution from the GIXD pattern on everyday basis.


Asunto(s)
Difracción de Rayos X , Incidencia , Rayos X
3.
Mater Sci Eng C Mater Biol Appl ; 110: 110623, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204065

RESUMEN

The presence of various functional groups in the structure of gelatin nanofibers (GNFs) has made it a suitable candidate for biomedical applications, yet its fast dissolution in aqueous media has been a real challenge for years. In the present work, we propose an efficient procedure to improve the durability of the GNFs. The electrospun GNFs were coated with poly(ethylene glycol dimethacrylate) (pEGDMA) using initiated chemical vapor deposition (iCVD) as a completely dry polymerization method. Morphological and chemical analysis revealed that an ultrathin layer formed around nanofibers (iCVD-GNFs) which has covalently bonded to gelatin chains. Against the instant dissolution of GNFs, the in vitro biodegradability test showed the iCVD-GNFs, to a large extent, preserve their morphology after 14 days of immersion and did not lose its integrity even after 31 days. In vitro cell culture studies, also, revealed cytocompatibility of the iCVD-GNFs for human fibroblast cells (hFC), as well as higher cell proliferation on the iCVD-GNFs compared to control made from tissue culture plate (TCP). Furthermore, contact angle measurements indicated that the hydrophilic GNFs became hydrophobic after the iCVD, yet FE-SEM images of cell-seeded iCVD-GNFs showed satisfactory cell adhesion. Taken together, the proposed method paves a promising way for the production of water-resistant GNFs utilized in biomedical applications; for instance, tissue engineering scaffolds and wound dressings.


Asunto(s)
Materiales Biocompatibles Revestidos , Fibroblastos/metabolismo , Gelatina , Ensayo de Materiales , Membranas Artificiales , Nanofibras/química , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Fibroblastos/citología , Gelatina/química , Gelatina/farmacología , Humanos , Metacrilatos/química , Metacrilatos/farmacología
4.
Cryst Growth Des ; 19(11): 6058-6066, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31728132

RESUMEN

Understanding the behavior and properties of molecules assembled in thin layers requires knowledge of their crystalline packing. The drug phenytoin (5,5-diphenylhydantoin) is one of the compounds that can be grown as a surface induced polymorph. By using grazing incidence X-ray diffraction, the monoclinic unit cell of the new form II can be determined, but, due to crystal size and the low amount of data, a full solution using conventional structure solving strategies fails. In this work, the full solution has been obtained by combining computational structure generation and experimental results. The comparison between the bulk and the new surface induced phase reveals significant packing differences of the hydrogen-bonding network, which might be the reason for the faster dissolution of form II with respect to form I. The results are very satisfactory, and the method might be adapted for other systems, where, due to the limited amount of experimental data, one must rely on additional approaches to gain access to more detailed information to understand the solid-state behavior.

5.
Int J Nanomedicine ; 14: 7795-7808, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31576124

RESUMEN

BACKGROUND: Endogenously expressed microRNAs (miRNAs) have attracted attention as important regulators in post-transcriptionally controlling gene expression of various physiological processes. As miRNA dysregulation is often associated with various disease patterns, such as obesity, miRNA-27a might therefore be a promising candidate for miRNA mimic replacement therapy by inhibiting adipogenic marker genes. However, application of naked nucleic acids faces some limitations concerning poor enzymatic stability, bio-membrane permeation and cellular uptake. To overcome these obstacles, the development of appropriate drug delivery systems (DDS) for miRNAs is of paramount importance. METHODS: In this work, a triple combination of atomic force microscopy (AFM), brightfield (BF) and fluorescence microscopy was used to trace the cellular adhesion of N-TER peptide-nucleic acid complexes followed by time-dependent uptake studies using confocal laser scanning microscopy (cLSM). To reveal the biological effect of miRNA-27a on adipocyte development after transfection treatment, Oil-Red-O (ORO)- staining was performed to estimate the degree of in lipid droplets accumulated ORO in mature adipocytes by using light microscopy images as well as absorbance measurements. RESULTS: The present findings demonstrated that amphipathic N-TER peptides represent a suitable DDS for miRNAs by promoting non-covalent complexation through electrostatic interactions between both components as well as cellular adhesion of the N-TER peptide - nucleic acid complexes followed by uptake across cell membranes and intracellular release of miRNAs. The anti-adipogenic effect of miRNA-27a in 3T3-L1 cells could be detected in mature adipocytes by reduced lipid droplet formation. CONCLUSION: The present DDS assembled from amphipathic N-TER peptides and miRNAs is capable of inducing the anti-adipogenic effect of miRNA-27a by reducing lipid droplet accumulation in mature adipocytes. With respect to miRNA mimic replacement therapies, this approach might provide new therapeutic strategies to prevent or treat obesity and obesity-related disorders.


Asunto(s)
Sistemas de Liberación de Medicamentos , MicroARNs/metabolismo , Péptidos/química , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis , Secuencia de Aminoácidos , Animales , Adhesión Celular , Gotas Lipídicas/metabolismo , Ratones , MicroARNs/genética , Ácidos Nucleicos de Péptidos/química , Transfección
6.
Macromolecules ; 52(18): 6817-6824, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31579141

RESUMEN

In this contribution, we report on the thin-film synthesis of a novel thermoresponsive polymer, namely, poly(N-vinylcaprolactam) cross-linked by di(ethylene glycol)divinyl ether [p(NVCL-co-DEGDVE)] by initiated chemical vapor deposition (iCVD). Its transition between swollen and shrunken states in film thickness and the corresponding lower critical solution temperature (LCST) was investigated by spectroscopic ellipsometry in water. Water contact angle measurements and nano-indentation experiments reveal that the transition is accompanied by a change in wettability and elastic modulus. The amount of cross-linking was used to tune the thermoresponsive behavior of the thin films, resulting in higher swelling and LCST, increased surface rearrangement, and lower stiffness for less cross-linked polymers. For the first time, the filament temperature during iCVD synthesis was used to vary the chain length of the resulting polymeric systems and, thus, the position of their thermoresponsive transition. With that, swelling of up to 250% compared to the dry thickness and transition temperatures ranging from 16 to 40 °C could be achieved.

7.
J Phys Chem C Nanomater Interfaces ; 123(39): 24165-24171, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31602284

RESUMEN

In this contribution, we report on the thin-film synthesis of a thermoresponsive polymer onto another polymer used as an enteric coating in drug applications. In particular, we deposit cross-linked poly(N-vinylcaprolactam) (pNVCL) thin films by initiated chemical vapor deposition (iCVD) onto spin-coated Eudragit (EUD) layers. Already upon iCVD synthesis, the layered structure starts to form wrinkles at a minimum iCVD thickness of 30 nm. By changing the EUD layer thickness and the amount of cross-linking used during iCVD, the morphology of the wrinkles is demonstrated to be readily tunable. Laterally, the double-layer structures vary in morphology from being ultrasmooth to exhibiting up to a 3.5 µm wrinkle wavelength. The surface roughness and, thus, the wrinkles' height can be tailored from below 1 nm up to 100 nm. From the resulting wavelength of wrinkles, an estimation of the elastic modulus of pNVCL proves its tunability over a wide range of values thanks to the iCVD process. This study elucidates an uncomplicated way to tune the wrinkles' morphology and, thus, the surface area of a system that can be employed in drug delivery applications. Hence, an enteric coating of EUD together with an iCVD-synthesized thermoresponsive thin film is proposed as a promising composite encapsulation layer to outperform established systems in terms of tunability of the response to multiple external stimuli.

8.
ACS Omega ; 4(4): 7014-7022, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459813

RESUMEN

Micro RNA (miRNA)-based medicines have attracted attention as new therapeutic strategies to treat genetic diseases and metabolic and immunological disorders. MiRNAs have emerged as key mediators of metabolic processes fulfilling regulatory functions in maintaining physiological conditions, while altered miRNA expression profiles are often associated with genetic diseases. However, naked miRNAs exhibit poor enzymatic stability, biomembrane permeation, and cellular uptake. To overcome these limitations, the development of appropriate drug delivery systems (DDS) is necessary. Herein, a DDS is characterized being assembled from miRNA-27a (negative regulator in fat metabolism) and the amphipathic N-TER peptide. Dynamic light scattering (DLS), electrophoretic light scattering, and atomic force microscopy (AFM) are used to investigate physicochemical properties (i.e., size, shape, and charge) of the DDS. Although surface charges should provide decent stabilization, the AFM results confirm a state of agglomeration, which is also suggested by DLS. Furthermore, AFM studies reveal adhesion on hydrophilic as well as hydrophobic substrates, which is related to the amphipathic properties of the N-TER peptide. Physicochemical properties of DDS are important parameters, which have an impact on cell internalization/uptake and have to be taken into account for in vitro studies to develop a successful peptide-based DDS for miRNA replacement therapy in metabolic diseases, such as obesity and others.

9.
J Appl Crystallogr ; 52(Pt 3): 683-689, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31236098

RESUMEN

GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene-quinone crystallites on a single-crystalline Au(111) surface.

10.
J Mol Biol ; 431(14): 2581-2598, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31034892

RESUMEN

The recent discovery of biologically active fully disordered, so called random fuzzy protein-protein interactions leads to the question of how the high flexibility of these protein complexes correlates to aggregation and pathologic misfolding. We identify the structural mechanism by which a random fuzzy protein complex composed of the intrinsically disordered proteins alpha-Synuclein and SERF1a is able to potentiate cytotoxic aggregation. A structural model derived from an integrated NMR/SAXS analysis of the reconstituted aSyn:SERF1a complex enabled us to observe the partial deprotection of one precise aSyn amyloid nucleation element in the fully unstructured ensemble. This minimal exposure was sufficient to increase the amyloidogenic tendency of SERF1a-bound aSyn. Our findings provide a structural explanation of the previously observed pro-amyloid activity of SERF1a. They further demonstrate that random fuzziness can trigger a structurally organized disease-associated reaction such as amyloid polymerization.


Asunto(s)
Amiloide/química , Encéfalo/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Humanos , Proteínas Intrínsecamente Desordenadas/química , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Neuroblastoma/patología , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia
11.
Soft Matter ; 15(8): 1853-1859, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30698598

RESUMEN

Control over drug delivery may be interestingly achieved by using temperature responsive encapsulants, which change their thickness and mesh size with temperature. The prototype N-isopropylacrylamide hydrogel cross-linked with di(ethylene glycol) divinyl ether p(NIPAAm-co-DEGDVE) swells at low temperature and collapses above the lower critical solution temperature (LCST), ∼29 °C in a buffer. It might be expected that drug release from such encapsulation is always favored below the LCST, due to the larger free volume present in the swollen polymer film. Recent results show contradicting behavior where some cases behave as expected and others release much less when the polymer layer is swollen. In this study, layers of the drugs phenytoin, clotrimazole and indomethacin were drop cast on glass and p(NIPAAM-co-DEGDVE) layers were then synthesized directly on top of these drug layers via initiated chemical vapor deposition (iCVD), a solvent-free and gentle polymerization technique. Dissolution experiments were then performed, in which the drug release through the hindrance of the hydrogel was measured at different pH values. The results show that not only the swelling but also the permeate (drug in this case)-polymer interaction plays an important role in the release.


Asunto(s)
Portadores de Fármacos/química , Liberación de Fármacos , Hidrogeles/química , Temperatura , Resinas Acrílicas/química , Cápsulas
12.
Cryst Growth Des ; 19(11): 6067-6073, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33828438

RESUMEN

A method for structure solution in thin films that combines grazing incidence X-ray diffraction data analysis and crystal structure prediction was presented in a recent work (Braun et al. Cryst. Growth Des.2019, DOI: 10.1021/acs.cgd.9b00857). Applied to phenytoin form II, which is only detected in films, the approach gave a very reasonable, but not fully confirmed, candidate structure with Z = 4 and Z' = 2. In the present work, we demonstrate how, by calculating and measuring the crystal Raman spectrum in the low wavenumber energy region with the aim of validating the candidate structure, this can be further refined. In fact, we find it to correspond to a saddle point of the energy landscape of the system, from which a minimum of lower symmetry may be reached. With the new structure, with Z = 4 and Z' = 2, we finally obtain an excellent agreement between experimental and calculated Raman spectra.

13.
Sci Rep ; 8(1): 7134, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739950

RESUMEN

Vapor-phase deposited polymer coatings are applied on thin indomethacin films to modify the drug release. Hydrogel-forming co-polymers of 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were prepared directly on top of solution cast indomethacin thin films by initiated Chemical Vapor Deposition (iCVD). This technique allows for solvent-free processing under mild conditions, thus minimizing a potential impact on the pharmaceutical. The drug release behavior, among other properties, was evaluated for polymers of different compositions and at different temperatures. The data show that the release kinetics can be tuned by several orders of magnitude as the cross-linker fraction is varied in the polymer coating. While uncoated indomethacin films were fully released within an hour, polymer coatings showed gradual liberation over several hours to days. Additional insight is gained from evaluating the experimental dissolution data in the framework of diffusive transport. The results of this study show that the iCVD technique has some promises for pharmaceutical technology, potentially allowing for tailored release behavior also for other drug systems.

14.
ACS Omega ; 3(8): 9564-9571, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459088

RESUMEN

We revisit the polymorphism of paracetamol by means of a micro-Raman technique, which has proved to be a powerful tool for structure recognition. Distinct lattice phonon spectra clearly identified the pure phases. Confocality enabled us to detect phase mixing between form II and either I or III on a micrometric scale in the same crystallite. Following the most recent findings on surface-mediated structures, we also investigated spin-coated films grown on glass, gold, and polystyrene substrates, confirming the selectivity of these surfaces for the metastable form III, which shows an unprecedented stability over a time span of several months. A mechanism of its transformation to phase II, via a partially ordered intermediate state, is suggested by polarized Raman measurements.

15.
ACS Omega ; 2(9): 5582-5590, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28983522

RESUMEN

Solubility enhancement and thus higher bioavailability are of great importance and a constant challenge in pharmaceutical research whereby polymorph screening and selection is one of the most important tasks. A very promising approach for polymorph screening is solvent vapor annealing where a sample is exposed to an atmosphere saturated with molecules of a specific chemical/solvent. In this work, amorphous carbamazepine thin films were prepared by spin coating, and the transformation into crystalline forms under exposure to solvent vapors was investigated. Employing grazing incidence X-ray diffraction, four distinct carbamazepine polymorphs, a solvate, and hydrates could be identified, while optical microscopy showed mainly spherulitic morphologies. In vitro dissolution experiments revealed different carbamazepine release from the various thin-film samples containing distinct polymorphic compositions: heat treatment of amorphous samples at 80 °C results in an immediate release; samples exposed to EtOH vapors show a drug release about 5 times slower than this immediate one; and all the others had intermediate release profiles. Noteworthy, even the sample of slowest release has a manifold faster release compared to a standard powder sample demonstrating the capabilities of thin-film preparation for faster drug release in general. Despite the small number of samples in this screening experiment, the results clearly show how solvent vapor annealing can assist in identifying potential polymorphs and allows for estimating their impact on properties like bioavailability.

16.
CrystEngComm ; 19(21): 2936-2945, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28670199

RESUMEN

Defined crystal growth is highly demanded for technological applications but also fundamental research. Within this work, the crystal growth of the asymmetric molecule caffeine was studied on single crystalline surfaces of muscovite mica, sodium chloride and potassium chloride. While elongated needle-like crystals grow on muscovite mica and sodium chloride, smaller individual "bird-like" structures were observed on potassium chloride. Depending on the surface type and temperature, the disk-shaped caffeine molecules prefer either an edge-on or flat-on orientation with respect to the surface, but in each case, a defined crystallographic relation between the surface and caffeine crystallites was determined by using the X-ray pole figure technique. On muscovite mica and sodium chloride, needle-like crystallites with edge-on oriented molecules aligned mainly with the unit cell c-axis (which coincides with the long needle axis) along the [1-10]mica, [100]mica, [110]mica and [110]NaCl, [1-10]NaCl directions, respectively. Crystals consisting of flat-on oriented molecules on KCl showed also defined alignments with respect to the substrate, but due to the altered molecule-substrate contact, the b-axis aligned along [110]KCl and [1-10]KCl. Growth at elevated temperatures enabled changes in the crystal growth whereby more defined structures formed on NaCl. On KCl, the bird-like structures remained very similar, while caffeine on the mica surface at elevated temperatures resulted in even additional texture forming with the caffeine molecules now also favoring a flat-on orientation with respect to the surface. The systematic variation of various system parameters demonstrates how sensitive the growth behavior of caffeine on this variety of substrates is.

17.
ACS Appl Mater Interfaces ; 9(13): 11977-11984, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28287698

RESUMEN

Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

18.
PLoS One ; 11(11): e0164149, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27828968

RESUMEN

Since therapeutic peptides and oligonucleotides are gathering interests as active pharmaceutical ingredients (APIs), nanoparticulate drug delivery systems are becoming of great importance. Thereby, the possibility to design drug delivery systems according to the therapeutic needs of APIs enhances clinical implementation. Over the last years, the focus of our group was laid on protamine-oligonucleotide-nanoparticles (so called proticles), however, the possibility to modify the size, zeta potential or loading efficiencies was limited. Therefore, at the present study we integrated a stepwise addition of protamine (titration) into the formation process of proticles loaded with the angiogenic neuropeptide secretoneurin (SN). A particle size around 130 nm was determined when proticles were assembled by the commonly used protamine addition at once. Through application of the protamine titration process it was possible to modify and adjust the particle size between approx. 120 and 1200 nm (dependent on mass ratio) without influencing the SN loading capacity. Dynamic light scattering pointed out that the difference in particle size was most probably the result of a secondary aggregation. Initially-formed particles of early stages in the titration process aggregated towards bigger assemblies. Atomic-force-microscopy images also revealed differences in morphology along with different particle size. In contrast, the SN loading was only influenced by the applied mass ratio, where a slight saturation effect was observable. Up to 65% of deployed SN could be imbedded into the proticle matrix. An in-vivo biodistribution study (i.m.) showed a retarded distribution of SN from the site of injection after the application of a SN-proticle formulation. Further, it was demonstrated that SN loaded proticles can be successfully freeze-dried and resuspended afterwards. To conclude, the integration of the protamine titration process offers new possibilities for the formulation of proticles in order to address key parameters of drug delivery systems as size, API loading or modified drug release.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Neuropéptidos/administración & dosificación , Oligonucleótidos/química , Protaminas/química , Secretogranina II/administración & dosificación , Animales , Carbocianinas/química , Química Farmacéutica/métodos , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Neuropéptidos/química , Neuropéptidos/farmacocinética , Tamaño de la Partícula , Secretogranina II/química , Secretogranina II/farmacocinética , Distribución Tisular
19.
Soft Matter ; 12(47): 9501-9508, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27841419

RESUMEN

Polymer encapsulation of drugs is conventionally used as a strategy for controlled delivery and enhanced stability. In this work, a novel encapsulation approach is demonstrated, in which the organic molecule clotrimazole is enclosed into wrinkles of defined sizes. Having defined wrinkles at the drug/encapsulant interface, the contact between the encapsulating polymer and the drug can be improved. In addition, this can also allow for some control on the drug delivery as the available surface area changes with the wrinkle size. For this purpose, thin films of clotrimazole were deposited onto silica substrates and were then encapsulated by crosslinked poly(2-hydroxyethyl methacrylate) (pHEMA) via initiated chemical vapor deposition (iCVD). The thickness and the solid state (crystalline or amorphous) of the clotrimazole layer were varied so that the conditions under which surface wrinkles emerge can be determined. A (critical) clotrimazole thickness of 76.6 nm was found necessary to induce wrinkles, whereby the wrinkle size is directly proportional to the thickness of the amorphous clotrimazole. When the pHEMA was deposited on top of crystalline clotrimazole instead, wrinkling was absent. The wrinkling effect can be understood in terms of elastic mismatch between the relatively rigid pHEMA film and the drug layer. In the case of amorphous clotrimazole, the relatively soft drug layer causes a large mismatch resulting in a sufficient driving force for wrinkle formation. Instead, the increased elastic modulus of crystalline clotrimazole reduces the elastic mismatch between drug and polymer, so that wrinkles do not form.


Asunto(s)
Química Farmacéutica , Sistemas de Liberación de Medicamentos , Gases/química , Polihidroxietil Metacrilato/química
20.
ACS Appl Mater Interfaces ; 8(33): 21177-84, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27467099

RESUMEN

The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications.


Asunto(s)
Polímeros/química , Cristalización , Gases , Calor , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...