Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 28(13): 3497-3509.e4, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31553917

RESUMEN

Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.


Asunto(s)
Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteoma/metabolismo , Humanos
2.
Cell ; 176(1-2): 144-153.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554877

RESUMEN

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.


Asunto(s)
5-Metilcitosina/análogos & derivados , Reparación del ADN/fisiología , ADN de Cadena Simple/fisiología , 5-Metilcitosina/metabolismo , Ácido Apurínico/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Escherichia coli/metabolismo , Polinucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
3.
Nucleic Acids Res ; 46(2): 504-519, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29202195

RESUMEN

Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved 'DNA replication restart' pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT).


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas Bacterianas/química , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos
4.
Mol Cell ; 67(3): 374-386.e5, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28735897

RESUMEN

RAD51 promotes homology-directed repair (HDR), replication fork reversal, and stalled fork protection. Defects in these functions cause genomic instability and tumorigenesis but also generate hypersensitivity to cancer therapeutics. Here we describe the identification of RADX as an RPA-like, single-strand DNA binding protein. RADX is recruited to replication forks, where it prevents fork collapse by regulating RAD51. When RADX is inactivated, excessive RAD51 activity slows replication elongation and causes double-strand breaks. In cancer cells lacking BRCA2, RADX deletion restores fork protection without restoring HDR. Furthermore, RADX inactivation confers chemotherapy and PARP inhibitor resistance to cancer cells with reduced BRCA2/RAD51 pathway function. By antagonizing RAD51 at forks, RADX allows cells to maintain a high capacity for HDR while ensuring that replication functions of RAD51 are properly regulated. Thus, RADX is essential to achieve the proper balance of RAD51 activity to maintain genome stability.


Asunto(s)
ADN de Neoplasias/biosíntesis , Resistencia a Antineoplásicos , Inestabilidad Genómica , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/metabolismo , Origen de Réplica , Células A549 , Animales , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Neoplasias/química , ADN de Neoplasias/genética , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Mutación , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Interferencia de ARN , Recombinasa Rad51/genética , Transfección
5.
Nat Genet ; 49(4): 537-549, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28191891

RESUMEN

To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Enanismo/genética , Inestabilidad Genómica/genética , Microcefalia/genética , Mutación/genética , Línea Celular , Daño del ADN/genética , Femenino , Humanos , Masculino
6.
J Biol Chem ; 291(35): 18384-96, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27382050

RESUMEN

Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks.


Asunto(s)
Proteínas Bacterianas/química , Cronobacter sakazakii/química , Proteínas de Unión al ADN/química , Proteínas Bacterianas/metabolismo , Cronobacter sakazakii/metabolismo , ADN Bacteriano/biosíntesis , ADN Bacteriano/química , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/química , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/química , AdnB Helicasas/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad
7.
J Bacteriol ; 196(7): 1359-68, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24443534

RESUMEN

DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5'-3' helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Secuencia de Bases , Daño del ADN , ADN Helicasas/genética , Viabilidad Microbiana , Datos de Secuencia Molecular , Mutación
8.
Proc Natl Acad Sci U S A ; 111(4): 1373-8, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24379377

RESUMEN

Collisions between cellular DNA replication machinery (replisomes) and damaged DNA or immovable protein complexes can dissociate replisomes before the completion of replication. This potentially lethal problem is resolved by cellular "replication restart" reactions that recognize the structures of prematurely abandoned replication forks and mediate replisomal reloading. In bacteria, this essential activity is orchestrated by the PriA DNA helicase, which identifies replication forks via structure-specific DNA binding and interactions with fork-associated ssDNA-binding proteins (SSBs). However, the mechanisms by which PriA binds replication fork DNA and coordinates subsequent replication restart reactions have remained unclear due to the dearth of high-resolution structural information available for the protein. Here, we describe the crystal structures of full-length PriA and PriA bound to SSB. The structures reveal a modular arrangement for PriA in which several DNA-binding domains surround its helicase core in a manner that appears to be poised for binding to branched replication fork DNA structures while simultaneously allowing complex formation with SSB. PriA interaction with SSB is shown to modulate SSB/DNA complexes in a manner that exposes a potential replication initiation site. From these observations, a model emerges to explain how PriA links recognition of diverse replication forks to replication restart.


Asunto(s)
ADN Helicasas/química , Replicación del ADN , Proteínas de Escherichia coli/química , Cristalografía por Rayos X , ADN Helicasas/genética , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación Proteica , Zinc/metabolismo
9.
J Biol Chem ; 288(24): 17569-78, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23629733

RESUMEN

Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sitios de Unión , Unión Competitiva , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , AdnB Helicasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Mapeo Peptídico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...