Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 279, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862521

RESUMEN

A key feature of cancer is the disruption of cell cycle regulation, which is characterized by the selective and abnormal activation of cyclin-dependent kinases (CDKs). Consequently, targeting CDKs via meriolins represents an attractive therapeutic approach for cancer therapy. Meriolins represent a semisynthetic compound class derived from meridianins and variolins with a known CDK inhibitory potential. Here, we analyzed the two novel derivatives meriolin 16 and meriolin 36 in comparison to other potent CDK inhibitors and could show that they displayed a high cytotoxic potential in different lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells. In a kinome screen, we showed that meriolin 16 and 36 prevalently inhibited most of the CDKs (such as CDK1, 2, 3, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 20). In drug-to-target modeling studies, we predicted a common binding mode of meriolin 16 and 36 to the ATP-pocket of CDK2 and an additional flipped binding for meriolin 36. We could show that cell cycle progression and proliferation were blocked by abolishing phosphorylation of retinoblastoma protein (a major target of CDK2) at Ser612 and Thr82. Moreover, meriolin 16 prevented the CDK9-mediated phosphorylation of RNA polymerase II at Ser2 which is crucial for transcription initiation. This renders both meriolin derivatives as valuable anticancer drugs as they target three different Achilles' heels of the tumor: (1) inhibition of cell cycle progression and proliferation, (2) prevention of transcription, and (3) induction of cell death.

2.
Cell Death Discov ; 10(1): 125, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461295

RESUMEN

Meriolin derivatives represent a new class of kinase inhibitors with a pronounced cytotoxic potential. Here, we investigated a newly synthesized meriolin derivative (termed meriolin 16) that displayed a strong apoptotic potential in Jurkat leukemia and Ramos lymphoma cells. Meriolin 16 induced apoptosis in rapid kinetics (within 2-3 h) and more potently (IC50: 50 nM) than the previously described derivatives meriolin 31 and 36 [1]. Exposure of Ramos cells to meriolin 16, 31, or 36 for 5 min was sufficient to trigger severe and irreversible cytotoxicity. Apoptosis induction by all three meriolin derivatives was independent of death receptor signaling but required caspase-9 and Apaf-1 as central mediators of the mitochondrial death pathway. Meriolin-induced mitochondrial toxicity was demonstrated by disruption of the mitochondrial membrane potential (ΔΨm), mitochondrial release of proapoptotic Smac, processing of the dynamin-like GTPase OPA1, and subsequent fragmentation of mitochondria. Remarkably, all meriolin derivatives were able to activate the mitochondrial death pathway in Jurkat cells, even in the presence of the antiapoptotic Bcl-2 protein. In addition, meriolins were capable of inducing cell death in imatinib-resistant K562 and KCL22 chronic myeloid leukemia cells as well as in cisplatin-resistant J82 urothelial carcinoma and 2102EP germ cell tumor cells. Given the frequent inactivation of the mitochondrial apoptosis pathway by tumor cells, such as through overexpression of antiapoptotic Bcl-2, meriolin derivatives emerge as promising therapeutic agents for overcoming treatment resistance.

3.
Chemistry ; 30(25): e202400559, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411573

RESUMEN

Dimeric naphthopyranones are known to be biologically active, however, for the corresponding monomeric naphthopyranones this information is still elusive. Here the first enantioselective total synthesis of semi-viriditoxic acid as well as the synthesis of semi-viriditoxin and derivatives is reported. The key intermediate in the synthesis of naphthopyranones is an α,ß-unsaturated δ-lactone, which we synthesized in two different ways (Ghosez-cyclization and Grubbs ring-closing metathesis), while the domino-Michael-Dieckmann reaction of the α,ß-unsaturated δ-lactone with an orsellinic acid derivative is the key reaction. A structure-activity relationship study was performed measuring the cytotoxicity in Burkitt B lymphoma cells (Ramos). The dimeric structure was found to be crucial for biological activity: Only the dimeric naphthopyranones showed cytotoxic and apoptotic activity, whereas the monomers did not display any activity at all.


Asunto(s)
Antineoplásicos , Linfoma de Burkitt , Relación Estructura-Actividad , Línea Celular Tumoral , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/patología , Estereoisomerismo , Apoptosis/efectos de los fármacos , Lactonas/química , Lactonas/farmacología , Lactonas/síntesis química , Ciclización
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958537

RESUMEN

The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly. It is well established that post-translational modifications control UsnRNP biogenesis. In our work presented here, we emphasize the crucial role of Gemin2, showing that the phospho-status of Gemin2 influences the capacity of the SMN complex to condense in Cajal bodies (CBs) in vivo. Additionally, we define Gemin2 as a novel and particular binding partner and phosphorylation substrate of the mTOR pathway kinase ribosomal protein S6 kinase beta-1 (p70S6K). Experiments using size exclusion chromatography further demonstrated that the Gemin2 protein functions as a connecting element between the 6S complex and the SMN complex. As a result, p70S6K knockdown lowered the number of CBs, which in turn inhibited in vivo UsnRNP synthesis. In summary, these findings reveal a unique regulatory mechanism of UsnRNP biogenesis.


Asunto(s)
Proteínas de Unión al ARN , Proteínas Quinasas S6 Ribosómicas 70-kDa , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosforilación , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/genética , Uridina/metabolismo
5.
Comput Struct Biotechnol J ; 21: 2100-2109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968021

RESUMEN

The spliceosome, responsible for all mature protein-coding transcripts of eukaryotic intron-containing genes, consists of small uridine-rich nuclear ribonucleoproteins (UsnRNPs). The assembly of UsnRNPs depends, on one hand, on the arginine methylation of Sm proteins catalyzed by the PRMT5 complex. On the other hand, it depends on the phosphorylation of the PRMT5 subunit pICln by the Uncoordinated Like Kinase 1 (ULK1). In consequence, phosphorylation of pICln affects the stability of the UsnRNP assembly intermediate, the so-called 6 S complex. The detailed mechanisms of phosphorylation-dependent integrity and subsequent UsnRNP assembly of the 6 S complex in vivo have not yet been analyzed. By using a phospho-specific antibody against ULK1-dependent phosphorylation sites of pICln, we visualize the intracellular distribution of phosphorylated pICln. Furthermore, we detect the colocaliphosphor-pICln1 with phospho-pICln by size-exclusion chromatography and immunofluorescence techniques. We also show that phosphorylated pICln is predominantly present in the 6 S complex. The addition of ULK1 to in vitro produced 6 S complex, as well as the reconstitution of ULK1 in ULK1-deficient cells, increases the efficiency of snRNP biogenesis. Accordingly, inhibition of ULK1 and the associated decreased pICln phosphorylation lead to accumulation of the 6 S complex and reduction in the spliceosomal activity of the cell.

6.
J Mol Cell Cardiol ; 175: 29-43, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36493853

RESUMEN

Regenerating the injured heart remains one of the most vexing challenges in cardiovascular medicine. Cell therapy has shown potential for treatment of myocardial infarction, but low cell retention so far has limited its success. Here we show that intramyocardial injection of highly apoptosis-resistant unrestricted somatic stem cells (USSC) into infarcted rat hearts resulted in an unprecedented thickening of the left ventricular wall with cTnT+/BrdU+ cardiomyocytes that was paralleled by progressively restored ejection fraction. USSC induced significant T-cell enrichment in ischemic tissue with enhanced expression of T-cell related cytokines. Inhibition of T-cell activation by anti-CD28 monoclonal antibody, fully abolished the regenerative response which was restored by adoptive T-cell transfer. Secretome analysis of USSC and lineage tracing studies suggest that USSC secrete paracrine factors over an extended period of time which boosts a T-cell driven endogenous regenerative response mainly from adult cardiomyocytes.


Asunto(s)
Células Madre Adultas , Infarto del Miocardio , Ratas , Animales , Linfocitos T , Infarto del Miocardio/terapia , Miocitos Cardíacos , Citocinas
7.
Cell Death Dis ; 13(11): 938, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347842

RESUMEN

Inhibition of the mitochondrial metabolism offers a promising therapeutic approach for the treatment of cancer. Here, we identify the mycotoxin viriditoxin (VDT), derived from the endophytic fungus Cladosporium cladosporioides, as an interesting candidate for leukemia and lymphoma treatment. VDT displayed a high cytotoxic potential and rapid kinetics of caspase activation in Jurkat leukemia and Ramos lymphoma cells in contrast to solid tumor cells that were affected to a much lesser extent. Most remarkably, human hematopoietic stem and progenitor cells and peripheral blood mononuclear cells derived from healthy donors were profoundly resilient to VDT-induced cytotoxicity. Likewise, the colony-forming capacity was affected only at very high concentrations, which provides a therapeutic window for cancer treatment. Intriguingly, VDT could directly activate the mitochondrial apoptosis pathway in leukemia cells in the presence of antiapoptotic Bcl-2 proteins. The mitochondrial toxicity of VDT was further confirmed by inhibition of mitochondrial respiration, breakdown of the mitochondrial membrane potential (ΔΨm), the release of mitochondrial cytochrome c, generation of reactive oxygen species (ROS), processing of the dynamin-like GTPase OPA1 and subsequent fission of mitochondria. Thus, VDT-mediated targeting of mitochondrial oxidative phosphorylation (OXPHOS) might represent a promising therapeutic approach for the treatment of leukemia and lymphoma without affecting hematopoietic stem and progenitor cells.


Asunto(s)
Leucemia , Linfoma , Micotoxinas , Humanos , Micotoxinas/metabolismo , Leucocitos Mononucleares/metabolismo , Apoptosis , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Potencial de la Membrana Mitocondrial
8.
Sci Rep ; 12(1): 17825, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280777

RESUMEN

Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.


Asunto(s)
Proteínas Bacterianas , Moraxella bovis , Humanos , Aciltransferasas , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Moraxella bovis/metabolismo , Sistemas de Secreción Tipo I
9.
Biol Chem ; 403(10): 907-915, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36040368

RESUMEN

Protein-arginine methylation is a common posttranslational modification, crucial to various cellular processes, such as protein-protein interactions or binding to nucleic acids. The central enzyme of symmetric protein arginine methylation in mammals is the protein arginine methyltransferase 5 (PRMT5). While the methylation reaction itself is well understood, recruitment and differentiation among substrates remain less clear. One mechanism to regulate the diversity of PRMT5 substrate recognition is the mutual binding to the adaptor proteins pICln or RioK1. Here, we describe the specific interaction of Nuclear Factor 90 (NF90) with the PRMT5-WD45-RioK1 complex. We show for the first time that NF90 is symmetrically dimethylated by PRMT5 within the RG-rich region in its C-terminus. Since upregulation of PRMT5 is a hallmark of many cancer cells, the characterization of its dimethylation and modulation by specific commercial inhibitors in vivo presented here may contribute to a better understanding of PRMT5 function and its role in cancer.


Asunto(s)
Proteínas del Factor Nuclear 90 , Proteína-Arginina N-Metiltransferasas , Animales , Arginina/metabolismo , Mamíferos/metabolismo , Metilación , Proteínas del Factor Nuclear 90/genética , Proteínas del Factor Nuclear 90/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
10.
Cell Death Dis ; 12(11): 1028, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716292

RESUMEN

Ferroptosis is a form of regulated cell death that emerges to be relevant for therapy-resistant and dedifferentiating cancers. Although several lines of evidence suggest that ferroptosis is a type of autophagy-dependent cell death, the underlying molecular mechanisms remain unclear. Fin56, a type 3 ferroptosis inducer, triggers ferroptosis by promoting glutathione peroxidase 4 (GPX4) protein degradation via a not fully understood pathway. Here, we determined that Fin56 induces ferroptosis and autophagy in bladder cancer cells and that Fin56-triggered ferroptosis mechanistically depends on the autophagic machinery. Furthermore, we found that autophagy inhibition at different stages attenuates Fin56-induced oxidative stress and GPX4 degradation. Moreover, we investigated the effects of Fin56 in combination with Torin 2, a potent mTOR inhibitor used to activate autophagy, on cell viability. We found that Fin56 synergizes with Torin 2 in cytotoxicity against bladder cancer cells. Collectively, our findings not only support the concept that ferroptosis is a type of autophagy-dependent cell death but imply that the combined application of ferroptosis inducers and mTOR inhibitors is a promising approach to improve therapeutic options in the treatment of bladder cancer.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Inhibidores mTOR/farmacología , Naftiridinas/farmacología , Oximas/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Neoplasias de la Vejiga Urinaria/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Estrés Oxidativo/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/patología
11.
Nucleic Acids Res ; 49(11): 6437-6455, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096600

RESUMEN

The biogenesis of small uridine-rich nuclear ribonucleoproteins (UsnRNPs) depends on the methylation of Sm proteins catalyzed by the methylosome and the subsequent action of the SMN complex, which assembles the heptameric Sm protein ring onto small nuclear RNAs (snRNAs). In this sophisticated process, the methylosome subunit pICln (chloride conductance regulatory protein) is attributed to an exceptional key position as an 'assembly chaperone' by building up a stable precursor Sm protein ring structure. Here, we show that-apart from its autophagic role-the Ser/Thr kinase ULK1 (Uncoordinated [unc-51] Like Kinase 1) functions as a novel key regulator in UsnRNP biogenesis by phosphorylation of the C-terminus of pICln. As a consequence, phosphorylated pICln is no longer capable to hold up the precursor Sm ring structure. Consequently, inhibition of ULK1 results in a reduction of efficient UsnRNP core assembly. Thus ULK1, depending on its complex formation, exerts different functions in autophagy or snRNP biosynthesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Línea Celular , Cuerpos Enrollados , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/fisiología , Canales Iónicos/metabolismo , Fosforilación , Proteína-Arginina N-Metiltransferasas/metabolismo
12.
Molecules ; 26(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668501

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are a group of molecules with an ambiguous background in literature. PBDEs were first isolated from marine sponges of Dysidea species in 1981 and have been under continuous research to the present day. This article summarizes the two research aspects, (i) the marine compound chemistry research dealing with naturally produced PBDEs and (ii) the environmental toxicology research dealing with synthetically-produced brominated flame-retardant PBDEs. The different bioactivity patterns are set in relation to the structural similarities and dissimilarities between both groups. In addition, this article gives a first structure-activity relationship analysis comparing both groups of PBDEs. Moreover, we provide novel data of a promising anticancer therapeutic PBDE (i.e., 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol; termed P01F08). It has been known since 1995 that P01F08 exhibits anticancer activity, but the detailed mechanism remains poorly understood. Only recently, Mayer and colleagues identified a therapeutic window for P01F08, specifically targeting primary malignant cells in a low µM range. To elucidate the mechanistic pathway of cell death induction, we verified and compared its cytotoxicity and apoptosis induction capacity in Ramos and Jurkat lymphoma cells. Moreover, using Jurkat cells overexpressing antiapoptotic Bcl-2, we were able to show that P01F08 induces apoptosis mainly through the intrinsic mitochondrial pathway.


Asunto(s)
Antineoplásicos/farmacología , Investigación Biomédica , Éteres Difenilos Halogenados/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Éteres Difenilos Halogenados/síntesis química , Éteres Difenilos Halogenados/química , Humanos , Relación Estructura-Actividad , Terminología como Asunto
13.
Nat Prod Res ; 35(2): 257-265, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31210064

RESUMEN

A new epidithiodiketopiperazine (ETP), pretrichodermamide G (1), along with three known (epi)dithiodiketopiparazines (2-4) were isolated from cultures of Trichoderma harzianum and Epicoccum nigrum, endophytic fungi associated with medicinal plants Zingiber officinale and Salix sp., respectively. The structure of the new compound (1) was established on the basis of spectroscopic data, including 1D/2D NMR and HRESIMS. The isolated compounds were investigated for their antifungal, antibacterial and cytotoxic potential against a panel of microorganisms and cell lines. Pretrichodermamide A (2) displayed antimicrobial activity towards the plant pathogenic fungus Ustilago maydis and the human pathogenic bacterium Mycobacterium tuberculosis with MIC values of 1 mg/mL (2 mM) and 25 µg/mL (50 µM), respectively. Meanwhile, epicorazine A (3) exhibited strong to moderate cytotoxicity against L5178Y, Ramos, and Jurkat J16 cell lines with IC50 values ranging from 1.3 to 28 µM. Further mechanistic studies indicated that 3 induces apoptotic cell death.


Asunto(s)
Ascomicetos/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Hypocreales/química , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Basidiomycota/efectos de los fármacos , Endófitos/química , Humanos , Células Jurkat , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Plantas Medicinales/microbiología , Espectrometría de Masa por Ionización de Electrospray
14.
Front Microbiol ; 11: 600983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250887

RESUMEN

Fermentation of the endophytic fungus Aplosporella javeedii on solid rice medium in presence of either 3.5% NaNO3 or 3.5% monosodium glutamate caused a significant change of the fungal metabolite pattern compared to fungal controls grown only on rice. Chemical investigation of the former fungal extracts yielded 11 new lactam derivatives, aplosporellins A-K (2-12), in addition to the known compound, pramanicin A (1). All of these compounds were not detected when the fungus was grown on rice medium without these activators thereby indicating the power of this OSMAC approach. The structures of the new compounds were elucidated by one- and two- dimensional NMR spectroscopy, DFT-NMR calculations and by mass spectrometry as well as by comparison with the literature whereas the absolute configuration of the lactam core was determined by TDDFT-ECD and OR calculations. Pramanicin A (1) showed strong cytotoxicity against human lymphoma (Ramos) and leukemia (Jurkat J16) cells with IC50 values of 4.7 and 4.4 µM, respectively. Mechanistic studies indicated that 1 activates caspase-3 and induces apoptotic cell death.

15.
Biomolecules ; 10(6)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498414

RESUMEN

Phomoxanthone A, a bioactive xanthone dimer isolated from the endophytic fungus Phomopsis sp., is a mitochondrial toxin weakening cellular respiration and electron transport chain activity by a fast breakup of the mitochondrial assembly. Here, a multi-disciplinary strategy has been developed and applied for identifying phomoxanthone A target(s) to fully address its mechanism of action, based on drug affinity response target stability and targeted limited proteolysis. Both approaches point to the identification of carbamoyl-phosphate synthase 1 as a major phomoxanthone A target in mitochondria cell lysates, giving also detailed insights into the ligand/target interaction sites by molecular docking and assessing an interesting phomoxanthone A stimulating activity on carbamoyl-phosphate synthase 1. Thus, phomoxanthone A can be regarded as an inspiring molecule for the development of new leads in counteracting hyperammonemia states.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Phomopsis/química , Xantonas/farmacología , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , Phomopsis/metabolismo , Xantonas/química , Xantonas/metabolismo
16.
Fitoterapia ; 146: 104652, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32512149

RESUMEN

Five sesterterpenes (1-5) including two new compounds (1 and 2), as well as a new (6) and a known macrolide (7) were isolated from the endophytic fungus Aplosporella javeedii. The structures of the new compounds were elucidated by analysis of their 1D and 2D NMR and HRMS data as well as by comparison with the literature. Compound 4 and its acetyl derivatives 4a, 4b, 4c which were prepared by acetylation of 4 exhibited moderate cytotoxicity against the mouse lymphoma cell line L5178Y with IC50 values ranging from 6.2 to 12.8 µM, respectively. Moreover, 4a and 4c exhibited also cytotoxicity against human leukemia (Jurkat J16) and lymphoma (Ramos) cell lines. Compound 7 showed strong cytotoxicity against the L5178Y cell line, as well as against human Jurkat J16 and Ramos cells with IC50 values of 0.4, 5.8, and 4.4 µM, respectively. Mechanistic studies indicated that 7 induces apoptotic cell death. In addition, compounds 3, 4 and 7 showed low antibacterial activities against Mycobacterium tuberculosis H37Rv and compound 6 against Staphylococcus aureus, respectively, with MICs of 100 µM. Preliminary structure-activity relationships are discussed.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Ascomicetos/química , Macrólidos/farmacología , Sesterterpenos/farmacología , Animales , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Brassicaceae/microbiología , Línea Celular Tumoral , China , Endófitos/química , Humanos , Macrólidos/aislamiento & purificación , Ratones , Estructura Molecular , Sesterterpenos/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
17.
RSC Adv ; 10(12): 7232-7240, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35493894

RESUMEN

Didymellanosine (1), the first analogue of the decahydrofluorene-class of natural products bearing a 13-membered macrocyclic alkaloid conjugated with adenosine, and a new benzolactone derivative, ascolactone C (4) along with eight known compounds (2, 3, 5-10), were isolated from a solid rice fermentation of the endophytic fungus Didymella sp. IEA-3B.1 derived from the host plant Terminalia catappa. In addition, ascochitamine (11) was obtained when (NH4)2SO4 was added to rice medium and is reported here for the first time as a natural product. Didymellanosine (1) displayed strong activity against the murine lymphoma cell line L5178Y, Burkitt's lymphoma B cells (Ramos) and adult lymphoblastic leukemia T cells (Jurkat J16), with IC50 values of 2.0, 3.3 and 4.4 µM, respectively. When subjected to a NFκB inhibition assay, didymellanosine (1) moderately blocked NFκB activation in the triple-negative breast cancer cell line MDA-MB 231. In an antimicrobial assay, ascomylactam C (3) was the most active compound when tested against a panel of Gram-positive bacteria including drug-resistant strains with MICs of 3.1-6.3 µM, while 1 revealed weaker activity. Interestingly, both compounds were also found active against Gram-negative Acinetobacter baumannii with MICs of 3.1 µM, in the presence of a sublethal concentration (0.1 µM) of colistin.

18.
Mar Drugs ; 17(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491907

RESUMEN

There is a variety of antineoplastic drugs that are based on natural compounds from ecological niches with high evolutionary pressure. We used two cell lines (Jurkat J16 and Ramos) in a screening to assess 300 different naturally occurring compounds with regard to their antineoplastic activity. The results of the compounds 4,6-dibromo-2-(2',4'-dibromophenoxy)phenol (P01F03), 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol (P01F08), and 5-epi-nakijinone Q (P03F03) prompted us to perform further research. Using viability and apoptosis assays on the cell lines of primary human leukemic and normal hematopoietic cells, we found that P01F08 induced apoptosis in the cell lines at IC50 values between 1.61 and 2.95 µM after 72 h. IC50 values of peripheral blood mononuclear cells (PBMNCs) from healthy donors were higher, demonstrating that the cytotoxicity in the cell lines reached 50%, while normal PBMNCs were hardly affected. The colony-forming unit assay showed that the hematopoietic progenitor cells were not significantly affected in their growth by P01F08 at a concentration of 3 µM. P01F08 showed a 3.2-fold lower IC50 value in primary leukemic cells [acute myeloid leukemia (AML)] compared to the PBMNC of healthy donors. We could confirm the antineoplastic effect of 5-epi-nakijinone Q (P03F03) on the cell lines via the induction of apoptosis but noted a similarly strong cytotoxic effect on normal PBMNCs.


Asunto(s)
Antineoplásicos/uso terapéutico , Fenol/uso terapéutico , Adulto , Anciano , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Células HL-60 , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células Jurkat , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Persona de Mediana Edad , Células THP-1
19.
Fitoterapia ; 137: 104249, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31247219

RESUMEN

Two azaphilone pigments (1 and 2), two dihydrobenzofurans (3 and 4), two macrodiolides (5 and 6), and a dimeric alkyl aromatic constituent (7) were isolated from the goose dung-derived fungus Coniella fragariae. Compounds 1-3 proved to be new natural products. Coniellins H and I (1 and 2) feature a tetracyclic core and an aldehyde group at C-5, which is unusual for azaphilone derivatives. The X-ray structure of pyrenophorin (5) is reported for the first time. Pyrenophorin (5) showed strong cytotoxicity against several cancer cell lines with IC50 values ranging from 0.07 to 7.8 µM.


Asunto(s)
Ascomicetos/química , Benzopiranos/farmacología , Pigmentos Biológicos/farmacología , Animales , Benzofuranos/aislamiento & purificación , Benzopiranos/aislamiento & purificación , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Heces/microbiología , Gansos/microbiología , Alemania , Humanos , Estructura Molecular , Mar del Norte , Pigmentos Biológicos/aislamiento & purificación
20.
Bioorg Med Chem ; 27(15): 3463-3468, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31248707

RESUMEN

3-(Hetero)aryl substituted 7-azaindoles possessing multikinase inhibitor activity are readily accessed in a one-pot Masuda borylation-Suzuki coupling sequence. Several promising derivatives were identified as apoptosis inducers and, emphasizing the multikinase inhibition potential, as sphingosine kinase 2 inhibitors. Our measurements provide additional insights into the structure-activity relationship of meriolin derivatives, suggesting derivatives bearing a pyridine moiety with amino groups in 2-position as most active anticancer compounds and thus as highly promising candidates for future in vivo studies.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células Jurkat , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...