Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 406: 110134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588923

RESUMEN

BACKGROUND: The piglet brain has been increasingly used as an excellent surrogate for investigation of pediatric neurodevelopment, nutrition, and traumatic brain injuries. This study intends to establish a piglet brain's structural connectivity model and compare it with the adult pig, enhancing its application for structurally guided functional analysis. METHODS: In this study, diffusion-weighted (DW)-MRI data from piglets (n=11, 3-week-old) was used to establish piglet model and compare with adult pigs. We employed a data-driven independent component analysis (ICA) method to derive piglet-specific tracts. Pearson correlations and Kullback-Leibler (KL) divergences was employed to identify common tracts and unique tracts for piglet. Common tracts were then used in a blueprint connectome study to highlight differences in regions of interest (ROI). RESULTS: The data-driven approach applied to piglet brains revealed 17 common tracts, showing high similarity with adult pigs' white matter (WM) tracts, and identified 3 tracts unique to piglets and 10 negative marker tracts. Additionally, the study highlighted notable differences in 3 ROIs associated with blueprint connectome. COMPARING WITH EXISTING METHODS: This study marks a significant shift from surface-based to voxel-based methodologies in analyzing pig brain structural connectivity and generating connectome blueprints. Additionally, it sheds light on the use of the piglet model for developmental studies, offering new perspectives in this area. CONCLUSION: This study established a piglet brain tract model and conducts a comparative analysis of adult pig's and piglet's structural connectivity. These findings underscore the potential use of the piglet brain model in employing piglet model for developmental studies.


Asunto(s)
Conectoma , Sustancia Blanca , Animales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Sustancia Blanca/anatomía & histología , Porcinos , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Animales Recién Nacidos , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/anatomía & histología , Masculino , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión Tensora/métodos
2.
Brain Sci ; 14(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38539635

RESUMEN

Pediatric traumatic brain injury (TBI) often induces significant disability in patients, including long-term motor deficits. Early detection of injury severity is key in determining a prognosis and creating appropriate intervention and rehabilitation plans. However, conventional magnetic resonance imaging (MRI) scans, such as T2 Weighted (T2W) sequences, do not reliably assess the extent of microstructural white matter injury. Diffusion tensor imaging (DTI) tractography enables three-dimensional reconstruction of specific white matter tracts throughout the brain in order to detect white matter injury based on anisotropic diffusion. The objective of this study was to employ DTI tractography to detect acute changes to white matter integrity within the intersecting fibers of key motor-related brain regions following TBI. Piglets were assigned to either the sham craniectomy group (sham; n = 6) or the controlled cortical impact TBI group (TBI; n = 6). Gait and MRI were collected at seven days post-surgery (DPS). T2W sequences confirmed a localized injury predominately in the ipsilateral hemisphere in TBI animals. TBI animals, relative to sham animals, showed an increased apparent diffusion coefficient (ADC) and decreased fractional anisotropy (FA) in fiber bundles associated with key brain regions involved in motor function. TBI animals exhibited gait deficits, including stride and step length, compared to sham animals. Together these data demonstrate acute reductions in the white matter integrity, measured by DTI tractography, of fibers intersecting key brain regions that strongly corresponded with acute motor deficits in a pediatric piglet TBI model. These results provide the foundation for the further development of DTI-based biomarkers to evaluate motor outcomes following TBI.

3.
Biom J ; 66(2): e2300037, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368275

RESUMEN

Conventional canonical correlation analysis (CCA) measures the association between two datasets and identifies relevant contributors. However, it encounters issues with execution and interpretation when the sample size is smaller than the number of variables or there are more than two datasets. Our motivating example is a stroke-related clinical study on pigs. The data are multimodal and consist of measurements taken at multiple time points and have many more variables than observations. This study aims to uncover important biomarkers and stroke recovery patterns based on physiological changes. To address the issues in the data, we develop two sparse CCA methods for multiple datasets. Various simulated examples are used to illustrate and contrast the performance of the proposed methods with that of the existing methods. In analyzing the pig stroke data, we apply the proposed sparse CCA methods along with dimension reduction techniques, interpret the recovery patterns, and identify influential variables in recovery.


Asunto(s)
Genómica , Accidente Cerebrovascular , Animales , Porcinos , Genómica/métodos , Análisis de Correlación Canónica , Algoritmos
4.
Nutr Neurosci ; 27(2): 147-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657164

RESUMEN

BACKGROUND: Functional connectivity (FC) measures statistical dependence between cortical brain regions. Studies of FC facilitate understanding of the brain's function and architecture that underpin normal cognition, behavior, and changes associated with various factors (e.g. nutritional supplements) at a large scale. OBJECTIVE: We aimed to identify modifications in FC patterns and targeted brain anatomies in piglets following perinatal intake of different nutritional diets using a graph theory based approach. METHODS: Forty-four piglets from four groups of pregnant sows, who were treated with nutritional supplements, including control diet, docosahexaenoic acid (DHA), egg yolk (EGG), and DHA + EGG, went through resting-state functional magnetic resonance imaging (rs-fMRI). We introduced the use of differential degree test (DDT) to identify differentially connected edges (DCEs). Simulation studies were first conducted to compare the DDT with permutation test, using three network structures at different noise levels. DDT was then applied to rs-fMRI data acquired from piglets. RESULTS: In simulations, the DDT showed a greater accuracy in detecting DCEs when compared with the permutation test. For empirical data, we found that the strength of internodal connectivity is significantly increased for more than 6% of edges in the EGG group and more than 8% of edges in the DHA and DHA + EGG groups, all compared to the control group. Moreover, differential wiring diagrams between group comparisons provided means to pinpoint brain hubs affected by nutritional supplements. CONCLUSION: DDT showed a greater accuracy of detection of DCEs and demonstrated EGG, DHA, and DHA + EGG supplemented diets lead to an improved internodal connectivity in the developing piglet brain.


Asunto(s)
Encéfalo , Suplementos Dietéticos , Embarazo , Animales , Porcinos , Femenino , Dieta/veterinaria , Ácidos Docosahexaenoicos , Cognición , Imagen por Resonancia Magnética/métodos
5.
Stem Cell Res Ther ; 14(1): 320, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936209

RESUMEN

BACKGROUND: Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes death in infancy. Since there are no adequate models for understanding the rapid fatality associated with LS, human-induced pluripotent stem cell (hiPSC) technology has been recognized as a useful approach to generate patient-specific stem cells for disease modeling and understanding the origins of the phenotype. METHODS: hiPSCs were generated from control BJ and four disease fibroblast lines using a cocktail of non-modified reprogramming and immune evasion mRNAs and microRNAs. Expression of hiPSC-associated intracellular and cell surface markers was identified by immunofluorescence and flow cytometry. Karyotyping of hiPSCs was performed with cytogenetic analysis. Sanger and next-generation sequencing were used to detect and quantify the mutation in all hiPSCs. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XFe96 extracellular flux analyzer. RESULTS: Reprogrammed hiPSCs expressed pluripotent stem cell markers including transcription factors POU5F1, NANOG and SOX2 and cell surface markers SSEA4, TRA-1-60 and TRA-1-81 at the protein level. Sanger sequencing analysis confirmed the presence of mutations in all reprogrammed hiPSCs. Next-generation sequencing demonstrated the variable presence of mutant mtDNA in reprogrammed hiPSCs. Cytogenetic analyses confirmed the presence of normal karyotype in all reprogrammed hiPSCs. Patient-derived hiPSCs demonstrated decreased maximal mitochondrial respiration, while mitochondrial ATP production was not significantly different between the control and disease hiPSCs. In line with low maximal respiration, the spare respiratory capacity was lower in all the disease hiPSCs. The hiPSCs also demonstrated neural and cardiac differentiation potential. CONCLUSION: Overall, the hiPSCs exhibited variable mitochondrial dysfunction that may alter their differentiation potential and provide key insights into clinically relevant developmental perturbations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Niño , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Mutación/genética , Metabolismo Energético/genética
6.
Front Neurosci ; 17: 1249539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841685

RESUMEN

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.

7.
Sci Rep ; 13(1): 2520, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781906

RESUMEN

Impaired gut homeostasis is associated with stroke often presenting with leaky gut syndrome and increased gut, brain, and systemic inflammation that further exacerbates brain damage. We previously reported that intracisternal administration of Tanshinone IIA-loaded nanoparticles (Tan IIA-NPs) and transplantation of induced pluripotent stem cell-derived neural stem cells (iNSCs) led to enhanced neuroprotective and regenerative activity and improved recovery in a pig stroke model. We hypothesized that Tan IIA-NP + iNSC combination therapy-mediated stroke recovery may also have an impact on gut inflammation and integrity in the stroke pigs. Ischemic stroke was induced, and male Yucatan pigs received PBS + PBS (Control, n = 6) or Tan IIA-NP + iNSC (Treatment, n = 6) treatment. The Tan IIA-NP + iNSC treatment reduced expression of jejunal TNF-α, TNF-α receptor1, and phosphorylated IkBα while increasing the expression of jejunal occludin, claudin1, and ZO-1 at 12 weeks post-treatment (PT). Treated pigs had higher fecal short-chain fatty acid (SCFAs) levels than their counterparts throughout the study period, and fecal SCFAs levels were negatively correlated with jejunal inflammation. Interestingly, fecal SCFAs levels were also negatively correlated with brain lesion volume and midline shift at 12 weeks PT. Collectively, the anti-inflammatory and neuroregenerative treatment resulted in increased SCFAs levels, tight junction protein expression, and decreased inflammation in the gut.


Asunto(s)
Accidente Cerebrovascular Isquémico , Nanopartículas , Células-Madre Neurales , Accidente Cerebrovascular , Masculino , Animales , Porcinos , Factor de Necrosis Tumoral alfa , Accidente Cerebrovascular/terapia , Células-Madre Neurales/patología , Inflamación/patología , Ácidos Grasos Volátiles
8.
Stem Cells Transl Med ; 11(10): 1061-1071, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36124817

RESUMEN

Induced pluripotent stem cell-derived neural stem cells (iNSCs) are a multimodal stroke therapeutic that possess neuroprotective, regenerative, and cell replacement capabilities post-ischemia. However, long-term engraftment and efficacy of iNSCs is limited by the cytotoxic microenvironment post-stroke. Tanshinone IIA (Tan IIA) is a therapeutic that demonstrates anti-inflammatory and antioxidative effects in rodent ischemic stroke models and stroke patients. Therefore, pretreatment with Tan IIA may create a microenvironment that is more conducive to the long-term survival of iNSCs. In this study, we evaluated the potential of Tan IIA drug-loaded nanoparticles (Tan IIA-NPs) to improve iNSC engraftment and efficacy, thus potentially leading to enhanced cellular, tissue, and functional recovery in a translational pig ischemic stroke model. Twenty-two pigs underwent middle cerebral artery occlusion (MCAO) and were randomly assigned to a PBS + PBS, PBS + iNSC, or Tan IIA-NP + iNSC treatment group. Magnetic resonance imaging (MRI), modified Rankin Scale neurological evaluation, and immunohistochemistry were performed over a 12-week study period. Immunohistochemistry indicated pretreatment with Tan IIA-NPs increased iNSC survivability. Furthermore, Tan IIA-NPs increased iNSC neuronal differentiation and decreased iNSC reactive astrocyte differentiation. Tan IIA-NP + iNSC treatment enhanced endogenous neuroprotective and regenerative activities by decreasing the intracerebral cellular immune response, preserving endogenous neurons, and increasing neuroblast formation. MRI assessments revealed Tan IIA-NP + iNSC treatment reduced lesion volumes and midline shift. Tissue preservation and recovery corresponded with significant improvements in neurological recovery. This study demonstrated pretreatment with Tan IIA-NPs increased iNSC engraftment, enhanced cellular and tissue recovery, and improved neurological function in a translational pig stroke model.


Asunto(s)
Abietanos , Accidente Cerebrovascular Isquémico , Nanopartículas , Células-Madre Neurales , Animales , Accidente Cerebrovascular Isquémico/terapia , Porcinos , Abietanos/farmacología
9.
Brain Sci ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009173

RESUMEN

Dynamic changes in the oral microbiome have gained attention due to their potential diagnostic role in neurological diseases such as Alzheimer's disease and Parkinson's disease. Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, but no studies have examined the changes in oral microbiome during the acute stage of TBI using a clinically translational pig model. Crossbred piglets (4-5 weeks old, male) underwent either a controlled cortical impact (TBI, n = 6) or sham surgery (sham, n = 6). The oral microbiome parameters were quantified from the upper and lower gingiva, both buccal mucosa, and floor of the mouth pre-surgery and 1, 3, and 7 days post-surgery (PS) using the 16S rRNA gene. Faith's phylogenetic diversity was significantly lower in the TBI piglets at 7 days PS compared to those of sham, and beta diversity at 1, 3, and 7 days PS was significantly different between TBI and sham piglets. However, no significant changes in the taxonomic composition of the oral microbiome were observed following TBI compared to sham. Further studies are needed to investigate the potential diagnostic role of the oral microbiome during the chronic stage of TBI with a larger number of subjects.

10.
Sci Rep ; 11(1): 12406, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117318

RESUMEN

Functional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Conectoma , Imagen por Resonancia Magnética/métodos , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Red Nerviosa/fisiopatología , Porcinos , Análisis y Desempeño de Tareas , Investigación Biomédica Traslacional
11.
IBRO Neurosci Rep ; 10: 18-30, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33842909

RESUMEN

BACKGROUND: The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. RESULTS: Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. CONCLUSION: The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.

12.
Sci Rep ; 11(1): 3814, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589720

RESUMEN

Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/diagnóstico , Actividad Motora/fisiología , Animales , Encéfalo/fisiopatología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Marcha/fisiología , Humanos , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/fisiopatología , Imagen por Resonancia Magnética , Recuperación de la Función/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiopatología , Porcinos
13.
Neural Regen Res ; 16(2): 338-344, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32859794

RESUMEN

Traumatic brain injury (TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments; however, identification of specific magnetic resonance imaging (MRI) biomarkers that are most reflective of injury severity and functional prognosis remain elusive. Therefore, the objective of this study was to utilize advanced statistical approaches to identify clinically relevant MRI biomarkers and predict functional outcomes using MRI metrics in a translational large animal piglet TBI model. TBI was induced via controlled cortical impact and multiparametric MRI was performed at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. Changes in spatiotemporal gait parameters were also assessed using an automated gait mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to determine the MRI metrics and spatiotemporal gait parameters that explain the largest sources of variation within the datasets. We found that linear combinations of lesion size and midline shift acquired using T2-weighted imaging explained most of the variability of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of velocity, cadence, and stride length were found to explain most of the gait data variability at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine if MRI metrics are predictive of changes in gait. We found that both lesion size and midline shift are significantly correlated with decreases in stride and step length. These results from this study provide an important first step at identifying relevant MRI and functional biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI model. This study was approved by the University of Georgia Institutional Animal Care and Use Committee (AUP: A2015 11-001) on December 22, 2015.

14.
Neural Regen Res ; 16(5): 842-850, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33229718

RESUMEN

Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.

15.
Alcohol Alcohol ; 56(3): 266-274, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33123726

RESUMEN

AIMS: Alcohol is the most commonly abused substance leading to significant economic and medical burdens. Pigs are an attractive model for studying alcohol abuse disorder due to the comparable alcohol metabolism and consumption behavior, which are in stark contrast to rodent models. This study investigates the usage of a porcine model for voluntary binge drinking (BD) and a detailed analysis of gait changes due to motor function deficits during alcohol intoxication. METHODS: Adolescent pigs were trained to drink increasing concentration (0-8%) of alcohol mixed in a 0.2% saccharin solution for 1 h in a two bottle choice test for 2 weeks. The training period was followed by a 3-week alcohol testing period, where animals were given free access to 8% alcohol in 0.2% saccharin solution and 0.2% saccharin water solution. Blood alcohol levels were tested and gait analysis was performed pre-alcohol consumption, last day of training, and Day 5 of each testing period. RESULTS: Pigs voluntarily consumed alcohol to intoxication at all timepoints with blood alcohol concentration (BAL) ≥80 mg/dl. Spatiotemporal gait parameters including velocity, cadence, cycle time, swing time, stance time, step time, and stride length were perturbed as a result of intoxication. The stratification of the gait data based on BAL revealed that the gait parameters were affected in a dose-dependent manner. CONCLUSION: This novel adolescent BD porcine model with inherent anatomical and physiological similarities to humans display similar consumption and intoxication behavior that is likely to yield results that are translatable to human patients.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/sangre , Etanol/administración & dosificación , Intoxicación Alcohólica/sangre , Animales , Nivel de Alcohol en Sangre , Modelos Animales , Sacarina/administración & dosificación , Porcinos
16.
Front Neurosci ; 14: 587986, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343283

RESUMEN

Stroke is a major cause of death and long-term disability affecting seven million adults in the United States each year. Recently, it has been demonstrated that neurological diseases, associated pathology, and susceptibility changes correlated with changes in the gut microbiota. However, changes in the microbial community in stroke has not been well characterized. The acute stage of stroke is a critical period for assessing injury severity, therapeutic intervention, and clinical prognosis. We investigated the changes in the gut microbiota composition and diversity using a middle cerebral artery (MCA) occlusion ischemic stroke pig model. Ischemic stroke was induced by cauterization of the MCA in pigs. Blood samples were collected prestroke and 4 h, 12 h, 1 day, and 5 days poststroke to evaluate circulating proinflammatory cytokines. Fecal samples were collected prestroke and 1, 3, and 5 days poststroke to assess gut microbiome changes. Results showed elevated systemic inflammation with increased plasma levels of tumor necrosis factor alpha at 4 h and interleukin-6 at 12 h poststroke, relative to prestroke. Microbial diversity and evenness were reduced at 1 day poststroke compared to prestroke. Microbial diversity at 3 days poststroke was negatively correlated with lesion volume. Moreover, beta-diversity analysis revealed trending overall differences over time, with the most significant changes in microbial patterns observed between prestroke and 3 days poststroke. Abundance of the Proteobacteria was significantly increased, while Firmicutes decreased at 3 days poststroke, compared to prestroke populations. Abundance of the lactic acid bacteria Lactobacillus was reduced at 3 days poststroke. By day 5, the microbial pattern returned to similar values as prestroke, suggesting the plasticity of gut microbiome in an acute period of stroke in a pig model. These findings provide a basis for characterizing gut microbial changes during the acute stage of stroke, which can be used to assess stroke pathology and the potential development of therapeutic targets.

17.
Front Vet Sci ; 7: 279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528985

RESUMEN

Strokes, both ischemic and hemorrhagic, are the most common underlying cause of acute, non-progressive encephalopathy in dogs. In effect, substantial information detailing the underlying causes and predisposing factors, affected vessels, imaging features, and outcomes based on location and extent of injury is available. The features of canine strokes on both computed tomography (CT) and magnetic resonance imaging (MRI) have been described in numerous studies. This summary article serves as a compilation of these various descriptions. Drawing from the established and emerging stroke evaluation sequences used in the investigation of strokes in humans, this summary describes all theoretically available sequences. Particular detail is given to logistics of image acquisition, description of imaging findings, and each sequence's advantages and disadvantages. As the imaging features of both forms of strokes are highly representative of the underlying pathophysiologic stages in the hours to months following stroke onset, the descriptions of strokes at various stages are also discussed. It is unlikely that canine strokes can be diagnosed within the same rapid time frame as human strokes, and therefore the opportunity for thrombolytic intervention in ischemic strokes is unattainable. However, a thorough understanding of the appearance of strokes at various stages can aid the clinician when presented with a patient that has developed a stroke in the days or weeks prior to evaluation. Additionally, investigation into new imaging techniques may increase the sensitivity and specificity of stroke diagnosis, as well as provide new ways to monitor strokes over time.

18.
Brain Res ; 1736: 146778, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32194080

RESUMEN

The acute stroke phase is a critical time frame used to evaluate stroke severity, therapeutic options, and prognosis while also serving as a major tool for the development of diagnostics. To further understand stroke pathophysiology and to enhance the development of treatments, our group developed a translational pig ischemic stroke model. In this study, the evolution of acute ischemic tissue damage, immune responses, and functional deficits were further characterized. Stroke was induced by middle cerebral artery occlusion in Landrace pigs. At 24 h post-stroke, magnetic resonance imaging revealed a decrease in ipsilateral diffusivity, an increase in hemispheric swelling resulting in notable midline shift, and intracerebral hemorrhage. Stroke negatively impacted white matter integrity with decreased fractional anisotropy values in the internal capsule. Like patients, pigs showed a reduction in circulating lymphocytes and a surge in neutrophils and band cells. Functional responses corresponded with structural changes through reductions in open field exploration and impairments in spatiotemporal gait parameters. Characterization of acute ischemic stroke in pigs provided important insights into tissue and functional-level assessments that could be used to identify potential biomarkers and improve preclinical testing of novel therapeutics.


Asunto(s)
Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Sustancia Blanca/patología , Animales , Isquemia Encefálica/patología , Depresión/etiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Marcha , Análisis de la Marcha/métodos , Infarto de la Arteria Cerebral Media/patología , Hemorragias Intracraneales/metabolismo , Hemorragias Intracraneales/fisiopatología , Linfocitos/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Neutrófilos/metabolismo , Accidente Cerebrovascular/fisiopatología , Porcinos
19.
Neural Regen Res ; 15(8): 1377-1387, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31997796

RESUMEN

The high morbidity and mortality rate of ischemic stroke in humans has led to the development of numerous animal models that replicate human stroke to further understand the underlying pathophysiology and to explore potential therapeutic interventions. Although promising therapeutics have been identified using these animal models, with most undergoing significant testing in rodent models, the vast majority of these interventions have failed in human clinical trials. This failure of preclinical translation highlights the critical need for better therapeutic assessment in more clinically relevant ischemic stroke animal models. Large animal models such as non-human primates, sheep, pigs, and dogs are likely more predictive of human responses and outcomes due to brain anatomy and physiology that are more similar to humans-potentially making large animal testing a key step in the stroke therapy translational pipeline. The objective of this review is to highlight key characteristics that potentially make these gyrencephalic, large animal ischemic stroke models more predictive by comparing pathophysiological responses, tissue-level changes, and model limitations.

20.
Front Physiol ; 11: 592950, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488396

RESUMEN

Alcohol is one of the most commonly abused intoxicants with 1 in 6 adults at risk for alcohol use disorder (AUD) in the United States. As such, animal models have been extensively investigated with rodent AUD models being the most widely studied. However, inherent anatomical and physiological differences between rodents and humans pose a number of limitations in studying the complex nature of human AUD. For example, rodents differ from humans in that rodents metabolize alcohol rapidly and do not innately demonstrate voluntary alcohol consumption. Comparatively, pigs exhibit similar patterns observed in human AUD including voluntary alcohol consumption and intoxication behaviors, which are instrumental in establishing a more representative AUD model that could in turn delineate the risk factors involved in the development of this disorder. Pigs and humans also share anatomical similarities in the two major target organs of alcohol- the brain and liver. Pigs possess gyrencephalic brains with comparable cerebral white matter volumes to humans, thus enabling more representative evaluations of susceptibility and neural tissue damage in response to AUD. Furthermore, similarities in the liver result in a comparable rate of alcohol elimination as humans, thus enabling a more accurate extrapolation of dosage and intoxication level to humans. A porcine model of AUD possesses great translational potential that can significantly advance our current understanding of the complex development and continuance of AUD in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA