RESUMEN
The pathogenesis of duodenal tumors in the inherited tumor syndromes familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) is poorly understood. This study aimed to identify genes that are significantly mutated in these tumors and to explore the effects of these mutations. Whole exome and whole transcriptome sequencing identified recurrent somatic coding variants of phosphatidylinositol N-acetylglucosaminyltransferase subunit A (PIGA) in 19/70 (27%) FAP and MAP duodenal adenomas, and further confirmed the established driver roles for APC and KRAS. PIGA catalyzes the first step in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Flow cytometry of PIGA-mutant adenoma-derived and CRISPR-edited duodenal organoids confirmed loss of GPI anchors in duodenal epithelial cells and transcriptional profiling of duodenal adenomas revealed transcriptional signatures associated with loss of PIGA. IMPLICATIONS: PIGA somatic mutation in duodenal tumors from patients with FAP and MAP and loss of membrane GPI-anchors may present new opportunities for understanding and intervention in duodenal tumorigenesis.
Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Duodenales , Glicosilfosfatidilinositoles , Proteínas de la Membrana , Mutación , Femenino , Humanos , Masculino , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología , Carcinogénesis/genética , Neoplasias Duodenales/genética , Neoplasias Duodenales/metabolismo , Neoplasias Duodenales/patología , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismoRESUMEN
Background: Genome, transcriptome and methylome-wide association studies have identified single-nucleotide polymorphisms (SNPs) or genes at 258 loci associated with colorectal cancer (CRC) risk. We studied the relationship between these and patient outcome. Methods: We studied 1926 unrelated patients with advanced CRC from COIN and COIN-B. Of 205 CRC-risk SNPs, 19 were directly genotyped and 162 were imputed, and of 53 risk genes, 52 were tested. An additive Cox model for overall survival was adjusted for known prognostic factors. For nominally significant SNPs or genes, we considered a recessive model with a Bonferroni corrected threshold of P = 2.1 × 10-4. We examined SNPs as expression quantitative trait loci (eQTL) and the relationship between gene expression in colorectal tumours and survival in 597 unrelated patients. Results: Eleven SNPs or genes were nominally associated with survival under an additive model. Only rs117079142 mapping to UTP23 and EIF3H (Hazard Ratio [HR] = 2.79, 95% Confidence Intervals [CI] = 1.70-4.58, P = 4.7 × 10-5) and rs9924886 mapping to CDH1 and CDH3 (HR = 1.24, 95% CI = 1.12-1.38, P = 5.2 × 10-5) passed the multiple testing threshold under a recessive model. rs117079142 was an eQTL for UTP23 and rs9924886 for CDH1, CDH3 and ZFP90. Decreased CDH1 expression in CRCs was associated with worse survival (HR = 2.18, 95% CI = 1.3-3.5, P = 1.8 × 10-3). Conclusion: rs117079142 and rs9924886 may represent potential prognostic biomarkers for CRC.
RESUMEN
Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.
Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , ADN Glicosilasas/genética , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN Glicosilasas/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Mutación , Tasa de MutaciónRESUMEN
We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.
Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Neoplasias de la Úvea , Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Endodesoxirribonucleasas/genética , Predisposición Genética a la Enfermedad , Células Germinativas/patología , Mutación de Línea Germinal/genética , Humanos , Neoplasias de la Úvea/genéticaRESUMEN
BACKGROUND: While genome-wide association studies (GWAS) have identified germline variants influencing the risk of developing colorectal cancer (CRC), there has been limited examination of the possible role of inherited variation as a determinant of patient outcome. PATIENTS AND METHODS: We performed a GWAS for overall survival (OS) in 1926 patients with advanced CRC from the COIN and COIN-B clinical trials. For single nucleotide polymorphisms (SNPs) showing an association with OS (P < 1.0 × 10-5), we conducted sensitivity analyses based on the time from diagnosis to death and sought independent replications in 5675 patients from the Study of Colorectal Cancer in Scotland (SOCCS) and 16,964 patients from the International Survival Analysis in Colorectal cancer Consortium (ISACC). We analysed the Human Protein Atlas to determine if ERBB4 expression was associated with survival in 438 patients with colon adenocarcinomas. RESULTS: The most significant SNP associated with OS was rs79612564 in ERBB4 (hazard ratio [HR] = 1.24, 95% confidence interval [CI] = 1.16-1.32, P = 1.9 × 10-7). SNPs at 17 loci had suggestive associations for OS and all had similar effects on the time from diagnosis to death. No lead SNPs were independently replicated in the meta-analysis of all patients from SOCCS and ISACC. However, rs79612564 was significant in stage-IV patients from SOCCS (P = 2.1 × 10-2) but not ISACC (P = 0.89) and SOCCS combined with COIN and COIN-B attained genome-wide significance (P = 1.7 × 10-8). Patients with high ERBB4 expression in their colon adenocarcinomas had worse survival (HR = 1.50, 95% CI = 1.1-1.9, P = 4.6 × 10-2). CONCLUSIONS: Genetic and expression data support a potential role for rs79612564 in the receptor tyrosine kinase ERBB4 as a predictive biomarker of survival.
Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Receptor ErbB-4/genética , Adenocarcinoma/mortalidad , Neoplasias Colorrectales/mortalidad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.