RESUMEN
The immune system has emerged as an important target of thyroid hormones (THs); however, the role of TH in T cells has so far remained elusive. In this study, we assessed the effect of TH receptor α (TRα) signaling on activation and function of T cells. Our findings show that lack of canonical TRα action not only increased the frequency of regulatory T cells (Treg) but propelled an activated and migratory Treg phenotype and nuclear factor κB (NF-κB) activation in Treg. Conversely, canonical TRα action reduced activation of the NF-κB pathway previously shown to play a pivotal role in Treg differentiation and function. Taken together, our findings demonstrate that TRα impacts T cell differentiation and phenotype. Given the well-known interaction of inflammation, immune responses, and TH axis in e.g., severe illness, altered TH-TRα signaling may have an important role in regulating T cell responses during disease.
RESUMEN
Opioid addiction presents a relevant health challenge, with chronic heroin use linked to detrimental effects on various aspects of physical, mental, and sociological health. Opioid maintenance therapy (OMT), particularly using methadone, is the primary treatment option for heroin addiction. Previous studies using blood samples from current heroin addicts and OMT patients have shown immunomodulatory effects of heroin and methadone on T cell function. However, various additional factors beyond heroin and methadone affect these results, including the consumption of other substances, a stressful lifestyle, comorbid psychological and somatic disorders, as well as additional medications. Therefore, we here investigated the direct effects of heroin and methadone on purified human T cells in vitro. Our results reveal that both, heroin and methadone directly suppress Tcell activation and proliferation. Strikingly, this inhibitory effect was markedly stronger in the presence of methadone, correlating with a decrease in secretion of pro-inflammatory cytokines. While heroin did not interfere with the in vitro differentiation and expansion of regulatory Tcells (Tregs), methadone significantly impaired the proliferation of Tregs. Overall, our findings suggest a direct inhibitory impact of both opioids on effector T cell function in vitro, with methadone additionally interfering with Treg induction and expansion in contrast to heroin.
Asunto(s)
Proliferación Celular , Citocinas , Dependencia de Heroína , Heroína , Activación de Linfocitos , Metadona , Linfocitos T Reguladores , Metadona/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Células Cultivadas , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Dependencia de Heroína/inmunología , Dependencia de Heroína/tratamiento farmacológico , Citocinas/metabolismo , Tratamiento de Sustitución de Opiáceos , Analgésicos Opioides/farmacología , Masculino , Adulto , Femenino , Diferenciación Celular/efectos de los fármacosRESUMEN
BACKGROUND: Crohn's disease (CD) significantly affects patients' well-being and is influenced by stress and lifestyle factors, highlighting the importance of improving quality of life in CD management. An imbalance between pro- and anti-inflammatory CD4+ T cell responses is a key factor in CD, and stress has been shown to alter the function of CD4+ T cells. Therefore, this study aimed to evaluate the effect of a mind-body medicine stress management and lifestyle modification (MBM) program on the CD4+ T cell profile in CD patients. METHODS: Circulating CD4+ T cells from CD patients were analyzed by flow cytometry following the MBM program. Patients were randomly assigned to either a guided intervention group (IG) or a self-guided waitlist control group (CG) over a 9-month trial and compared with healthy blood donors. RESULTS: Lifestyle intervention reduced regulatory T cell (Treg) frequencies in the blood of CD patients. Notably, we observed a significant correlation between the quality of life improvement and Treg frequencies in the IG but not in the CG. Furthermore, differential activation and expression of the gut-homing molecules G protein-coupled receptor 15 and CCR9 on circulating Tregs and CD4+ effector T cells were detected in both the IG and CG. CONCLUSIONS: The MBM program, whether guided or self-directed, has the potential to restore the CD4+ T cell profile of CD patients to levels comparable to healthy blood donors. Lifestyle interventions may benefit CD progression, symptoms, and immunological status, but further analysis is needed to substantiate these findings and to fully understand their clinical implications. (ClinicalTrials.gov: NCT05182645).
Stress significantly impacts Crohn's disease. Lifestyle intervention reduces circulating regulatory T cell frequencies, correlates with improved patient quality of life, holds promise for restoring circulating CD4+ T cell profiles, and improves patient care by integrating stress management.
RESUMEN
Introduction: The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods: C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion: We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.
Asunto(s)
Hepatitis , Inmunidad Innata , Animales , Ratones , Anfirregulina/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33 , Linfocitos , Ratones Endogámicos C57BL , Linfocitos T ReguladoresRESUMEN
Influenza A virus (IAV) can cause severe respiratory infection leading to significant global morbidity and mortality through seasonal epidemics. Likewise, the constantly increasing number of cancer diseases is a growing problem. Nevertheless, the understanding of the mutual interactions of the immune responses between cancer and infection is still very vague. Therefore, it is important to understand the immunological cross talk between cancer and IAV infection. In several preclinical mouse models of cancer, including melanoma and colorectal cancer, we observed that IAV infection in the lung significantly decreased the tumour burden. Concomitantly, tumour-specific CD8+ T-cells are strongly activated upon infection, both in the tumour tissue and in the lung. CD8+ T-cell depletion during infection reverses the reduced tumour growth. Interestingly, IAV infection orchestrated the migration of tumour-specific CD8+ T-cells from the tumour into the infected lung. Blocking the migration of CD8+ T-cells prevented the anti-tumoural effect. Thus, our findings show that viral respiratory infection has significant impact on the anti-tumour CD8+ T-cell response, which will significantly improve our understanding of the immunological cross talk between cancer and infection.
Asunto(s)
Enfermedades Transmisibles , Virus de la Influenza A , Gripe Humana , Neoplasias , Infecciones por Orthomyxoviridae , Ratones , Animales , Humanos , Linfocitos T CD8-positivos , InmunidadRESUMEN
Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.
Asunto(s)
Coriomeningitis Linfocítica , Malaria Cerebral , Parásitos , Ratones , Animales , Neuropilina-1 , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica , Linfocitos T CD8-positivos/patología , Ratones Endogámicos C57BLRESUMEN
Introduction: Early sepsis is a life-threatening immune dysregulation believed to feature a "cytokine storm" due to activation of pattern recognition receptors by pathogen and danger associated molecular patterns. However, treatments with single toll-like receptor (TLR) blockers have shown no clinical benefit. We speculated that sepsis patients at the time of diagnosis are heterogeneous in relation to their cytokine production and its potential inhibition by a triple cocktail of TLR blockers. Accordingly, we analyzed inflammatory cytokine production in whole blood assays from early sepsis patients and determined the effects of triple TLR-blockade. Methods: Whole blood of 51 intensive care patients sampled within 24h of meeting Sepsis-3 criteria was incubated for 6h without or with specific TLR2, 4, and 7/8 stimuli or suspensions of heat-killed S. aureus or E. coli bacteria as pan-TLR challenges, and also with a combination of monoclonal antibodies against TLR2 and 4 and chloroquine (endosomal TLR inhibition), subsequent to dose optimization. Concentrations of tumor necrosis factor (TNF), Interleukin(IL)-6, IL-8, IL-10, IL-1α and IL-1ß were measured (multiplex ELISA) before and after incubation. Samples from 11 sex and age-matched healthy volunteers served as controls and for dose-finding studies. Results: Only a fraction of sepsis patient samples revealed ongoing cytokine production ex vivo despite sampling within 24 h of first meeting Sepsis-3 criteria. In dose finding studies, inhibition of TLR2, 4 and endosomal TLRs reliably suppressed cytokine production to specific TLR agonists and added bacteria. However, inflammatory cytokine production ex vivo was only suppressed in the high cytokine producing samples but not in the majority. The suppressive response to TLR-blockade correlated both with intraassay inflammatory cytokine production (r=0.29-0.68; p<0.0001-0.04) and cytokine baseline concentrations (r=0.55; p<0.0001). Discussion: Upon meeting Sepsis-3 criteria for less than 24 h, a mere quarter of patient samples exhibits a strong inflammatory phenotype, as characterized by increased baseline inflammatory cytokine concentrations and a stark TLR-dependent increase upon further ex vivo incubation. Thus, early sepsis patient cohorts as defined by Sepsis-3 criteria are very heterogeneous in regard to inflammation. Accordingly, proper ex vivo assays may be useful in septic individuals before embarking on immunomodulatory treatments.
Asunto(s)
Sepsis , Receptor Toll-Like 2 , Humanos , Receptor Toll-Like 2/genética , Escherichia coli , Staphylococcus aureus , Receptores Toll-Like , Citocinas , Sepsis/tratamiento farmacológicoRESUMEN
CD47 is a cell surface protein controlling phagocytotic activity of innate immune cells. CD47 blockade was investigated as an immune checkpoint therapy in cancer treatment, enhancing phagocytosis of tumor cells by macrophages. Anti-CD47 treatment also reduced injury size during reperfused acute myocardial infarction (repAMI) by enhancing phagocytotic acitivity of macrophages. Little is known about the impact of CD47 blockade on neutrophils, representing the main portion of early infiltrating immune cells after repAMI. Therefore, we performed 45 min of cardiac ischemia followed by 24 h of reperfusion, observing a decreased cardiac injury size measured by triphenyl tetrazolium chloride (TTC) Evan's blue staining. We were able to detect this effect with an innovative three-dimensional method based on light sheet fluorescence microscopy (LSFM). This further allowed us a simultaneous analysis of neutrophil infiltration, showing an unaltered amount of injury-associated neutrophils with reduced cardiac injury volume from repAMI. This observation suggests modulated phagocytosis of cell debris by neutrophils. Therefore, we performed flow cytometry analysis, revealing an increased phagocytotic activity of neutrophils in vitro. These findings highlight that CD47 blockade also enhances phagocytosis of cardiac cell debris by neutrophils, which might be an additional protective effect of anti-CD47 treatment after repAMI.
RESUMEN
BACKGROUND AIMS: Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS: Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS: The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS: Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.
Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , MicroARNs , Humanos , Animales , Ratones , Medios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad Injerto contra Huésped/terapia , Células Madre Mesenquimatosas/metabolismoRESUMEN
Background: Asthma is an incurable heterogeneous disease with variations in clinical and underlying immunological phenotype. New approaches could help to support existing therapy concepts. Neonatal infection of mice with Helicobacter pylori or administration of H. pylori-derived extracts or molecules after birth have been shown to prevent the development of allergic airway disease later in life. This study evaluated the potential therapeutic efficacy of H. pylori vacuolating cytotoxin A (VacA) in allergic airway inflammation and investigated the underlying immunological mechanisms for its actions. Methods: Murine models of allergic airway diseases, and murine and human in vitro models were used. Results: In both an acute model and a therapeutic house dust mite model of allergic airway disease, treatment with H. pylori-derived VacA reduced several asthma hallmarks, including airway hyperresponsiveness, inflammation and goblet cell metaplasia. Flow cytometry and ELISA analyses revealed induction of tolerogenic dendritic cells (DC) and FoxP3 positive regulatory T cells (Tregs), and a shift in the composition of allergen-specific immunoglobulins. Depletion of Tregs during treatment with VacA reversed treatment-mediated suppression of allergic airway disease. Human monocyte derived DCs (moDC) that were exposed to VacA induced Tregs in co-cultured naïve autologous T cells, replicating key observations made in vivo. Conclusion: H. pylori-derived VacA suppressed allergic airway inflammation via induction of Tregs in both allergic airway disease models. These data suggest that the immunomodulatory activity of VacA could potentially be exploited for the prevention and treatment of allergic airway disease.
Asunto(s)
Asma , Helicobacter pylori , Hipersensibilidad , Trastornos Respiratorios , Hipersensibilidad Respiratoria , Ratones , Humanos , Animales , InflamaciónRESUMEN
Human cytomegalovirus (HCMV) frequently causes congenital infections, resulting in birth defects and developmental disorders. A vaccine is needed, but unavailable. We analyzed the potential of CMV mutants, lacking their STAT2 antagonists to serve as live attenuated vaccine viruses in mice. Infections with attenuated viruses elicited strong ELISA-reactive binding IgG responses and induced neutralizing antibodies as well as antibodies stimulating cellular Fcγ receptors, including the antibody-dependent cellular cytotoxicity (ADCC)-eliciting receptors FcγRIII/CD16 and FcγRIV. Accordingly, vaccinated mice were fully protected against challenge infections. Female mice vaccinated prior to gestation transmitted CMV-specific IgG to their offspring, which protected the progeny from perinatal infections in a mouse model for congenital CMV disease. To define the role of maternal antibodies, female mice either capable or incapable of producing antibodies were vaccinated and subsequently bred to males of the opposite genotype. Challenge infections of the genotypically identical F1 generation revealed the indispensability of maternal antibodies for vaccine-induced protection against cytomegaloviruses.
RESUMEN
Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.
Asunto(s)
Colitis , Infecciones por Citomegalovirus , Microbioma Gastrointestinal , Muromegalovirus , Humanos , Animales , Ratones , Citomegalovirus , Células Epiteliales/metabolismoRESUMEN
Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.
Asunto(s)
Colitis , Mucosa Intestinal , Animales , Cicatrización de Heridas , Células Epiteliales/metabolismo , Epitelio , Modelos Animales de EnfermedadRESUMEN
Acid sphingomyelinase (Asm) and acid ceramidase (Ac) are parts of the sphingolipid metabolism. Asm hydrolyzes sphingomyelin to ceramide, which is further metabolized to sphingosine by Ac. Ceramide generates ceramide-enriched platforms that are involved in receptor clustering within cellular membranes. However, the impact of cell-intrinsic ceramide on T cell function is not well characterized. By using T cell-specific Asm- or Ac-deficient mice, with reduced or elevated ceramide levels in T cells, we identified ceramide to play a crucial role in T cell function in vitro and in vivo. T cell-specific ablation of Asm in Smpd1fl/fl/Cd4cre/+ (Asm/CD4cre) mice resulted in enhanced tumor progression associated with impaired T cell responses, whereas Asah1fl/fl/Cd4cre/+ (Ac/CD4cre) mice showed reduced tumor growth rates and elevated T cell activation compared to the respective controls upon tumor transplantation. Further in vitro analysis revealed that decreased ceramide content supports CD4+ regulatory T cell differentiation and interferes with cytotoxic activity of CD8+ T cells. In contrast, elevated ceramide concentration in CD8+ T cells from Ac/CD4cre mice was associated with enhanced cytotoxic activity. Strikingly, ceramide co-localized with the T cell receptor (TCR) and CD3 in the membrane of stimulated T cells and phosphorylation of TCR signaling molecules was elevated in Ac-deficient T cells. Hence, our results indicate that modulation of ceramide levels, by interfering with the Asm or Ac activity has an effect on T cell differentiation and function and might therefore represent a novel therapeutic strategy for the treatment of T cell-dependent diseases such as tumorigenesis.
Asunto(s)
Ceramidas , Melanoma , Animales , Ratones , Ceramidas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Esfingosina/metabolismo , Receptores de Antígenos de Linfocitos TRESUMEN
CD47 is an ubiquitously expressed surface molecule with significant impact on immune responses. However, its role for antiviral immunity is not fully understood. Here, we revealed that the expression of CD47 on immune cells seemed to disturb the antiviral immune response as CD47-deficient mice (CD47-/-) showed an augmented clearance of influenza A virus (IAV). Specifically, we have shown that enhanced viral clearance is mediated by alveolar macrophages (aMФ). Although aMФ displayed upregulation of CD47 expression during IAV infection in wildtype mice, depletion of aMФ in CD47-/- mice during IAV infection reversed the augmented viral clearance. We have also demonstrated that CD47 restricts hemoglobin (HB) expression in aMФ after IAV and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, with HB showing antiviral properties by enhancing the IFN-ß response. Our study showed a negative role for CD47 during antiviral immune responses in the lung by confining HB expression in aMФ.
RESUMEN
Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wildtype mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.
Asunto(s)
Malaria , Plasmodium yoelii , Ceramidasa Ácida , Animales , Ceramidas/farmacología , Eritropoyesis , Malaria/tratamiento farmacológico , Ratones , ParasitemiaRESUMEN
RATIONALE: The immune profile of sepsis patients is incompletely understood and hyperinflammation and hypoinflammation may occur concurrently or sequentially. Immune checkpoint inhibition (ICI) may counter hypoinflammation but effects are uncertain. We tested the reactivity of septic whole blood to bacteria, Toll-like receptor (TLR) ligands and to ICI. METHODS: Whole blood assays of 61 patients' samples within 24h of meeting sepsis-3 criteria and 12 age and sex-matched healthy volunteers. Measurements included pattern/danger-associated molecular pattern (P/DAMP), cytokine concentrations at baseline and in response to TLR 2, 4, and 7/8 ligands, heat-inactivated Staphylococcus aureus or Escherichia coli, E.coli lipopolysaccharide (LPS), concentration of soluble and cellular immune checkpoint molecules, and cytokine concentrations in response to ICI directed against programmed-death receptor 1 (PD1), PD1-ligand 1, or cytotoxic T-lymphocyte antigen 4, both in the absence and presence of LPS. MAIN RESULTS: In sepsis, concentrations of P/DAMPs and inflammatory cytokines were increased and the latter increased further upon incubation ex vivo. However, cytokine responses to TLR 2, 4, and 7/8 ligands, heat-inactivated S. aureus or E. coli, and E. coli LPS were all depressed. Depression of the response to LPS was associated with increased in-hospital mortality. Despite increased PD-1 expression on monocytes and T-cells, and monocyte CTLA-4 expression, however, addition of corresponding checkpoint inhibitors to assays failed to increase inflammatory cytokine concentrations in the absence and presence of LPS. CONCLUSION: Patients first meeting Sepsis-3 criteria reveal 1) depressed responses to multiple TLR-ligands, bacteria, and bacterial LPS, despite concomitant inflammation, but 2) no response to immune checkpoint inhibition.
Asunto(s)
Sepsis , Receptor Toll-Like 2 , Citocinas/metabolismo , Escherichia coli/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Ligandos , Lipopolisacáridos , Monocitos/metabolismo , Sepsis/metabolismo , Staphylococcus aureus/metabolismo , Receptor Toll-Like 2/metabolismo , Receptores Toll-Like/metabolismoRESUMEN
Ultrasmall gold nanoparticles (2 nm) easily penetrate the membranes of intestinal murine epithelial cells (MODE-K) and colorectal cancer cells (CT-26). They are also taken up by 3D spheroids (400 µm) of these cell types and primary gut organoids (500 µm). In contrast, dissolved dyes are not taken up by any of these cells or 3D structures. The distribution of fluorescent ultrasmall gold nanoparticles inside cells, spheroids, and gut organoids is examined by confocal laser scanning microscopy. Nanoparticles conjugated with the cytostatic drug doxorubicin and a fluorescent dye exhibit significantly greater cytotoxicity toward CT-26 tumor spheroids than equally concentrated dissolved doxorubicin, probably because they enter the interior of a spheroid much more easily than dissolved doxorubicin. Comprehensive analyses show that the cellular uptake of ultrasmall gold nanoparticles occurs by different endocytosis pathways.
Asunto(s)
Nanopartículas del Metal , Neoplasias , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Oro , Humanos , Ratones , Esferoides CelularesRESUMEN
Clinical and experimental studies indicate that the bacterial and fungal gut microbiota modulates immune responses in distant organs including the lungs. Immune dysregulation is associated with severe SARS-CoV-2 infection, and several groups have observed gut bacterial dysbiosis in SARS-CoV-2 infected patients, while the fungal gut microbiota remains poorly defined in these patients. We analyzed the fungal gut microbiome from rectal swabs taken prior to anti-infective treatment in 30 SARS-CoV-2 positive (21 non-severe COVID-19 and 9 developing severe/critical COVID-19 patients) and 23 SARS-CoV-2 negative patients by ITS2-sequencing. Pronounced but distinct interconnected fungal communities distinguished SARS-CoV-2 positive and negative patients. Fungal gut microbiota in severe/critical COVID-19 illness was characterized by a reduced diversity, richness and evenness and by an increase of the relative abundance of the Ascomycota phylum compared with non-severe COVID-19 illness. A dominance of a single fungal species with a relative abundance of >75% was a frequent feature in severe/critical COVID-19. The dominating fungal species were highly variable between patients even within the groups. Several fungal taxa were depleted in patients with severe/critical COVID-19.The distinct compositional changes of the fungal gut microbiome in SARS-CoV-2 infection, especially in severe COVID-19 illness, illuminate the necessity of a broader approach to investigate whether the differences in the fungal gut microbiome are consequences of SARS-CoV-2 infection or a predisposing factor for critical illness.
Asunto(s)
Ascomicetos , COVID-19 , Microbioma Gastrointestinal , Micobioma , Bacterias , Disbiosis , Humanos , SARS-CoV-2RESUMEN
Over the past few years, growing evidence suggests direct crosstalk between thyroid hormones (THs) and the immune system. Components of the immune system were proposed to interfere with the central regulation of systemic TH levels. Conversely, THs regulate innate and adaptive immune responses as immune cells are direct target cells of THs. Accordingly, they express different components of local TH action, such as TH transporters or receptors, but our picture of the interplay between THs and the immune system is still incomplete. This review provides a critical overview of current knowledge regarding the interaction of THs and the immune system with the main focus on local TH action within major innate and adaptive immune cell subsets. Thereby, this review aims to highlight open issues which might help to infer the clinical relevance of THs in host defence in the context of different types of diseases such as infection, ischemic organ injury or cancer.