Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
FEBS J ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38362803

RESUMEN

Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration. Then, we reconstructed the dynamic fusion-fission-mitophagy cycling of mitochondria in a computer model, integrating these processes into a single network mechanism. Both the computational model and the simulations are able to reproduce the proposed mechanism in terms of mitochondrial dynamics, levels of reactive oxygen species (ROS), mitophagy, and mitochondrial quality, thus providing a computational tool for the interpretation of the experimental data and for future studies aiming to detail further the action of NGF on mitochondrial processes. We also show that changes in these mitochondrial processes are intertwined with a metabolic function of NGF in differentiation: NGF directs a profound metabolic rearrangement involving glycolysis, TCA cycle, and the pentose phosphate pathway, altering the redox balance. This metabolic rewiring may ensure: (a) supply of both energy and building blocks for the anabolic processes needed for morphological reorganization, as well as (b) redox homeostasis.

2.
Toxics ; 12(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276724

RESUMEN

At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.

3.
Life (Basel) ; 13(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38004260

RESUMEN

Movile Cave, situated in Romania close to the Black Sea, constitutes a distinct and challenging environment for life. Its partially submerged ecosystem depends on chemolithotrophic processes for its energetics, which are fed by a continuous hypogenic inflow of mesothermal waters rich in reduced chemicals such as hydrogen sulfide and methane. We sampled a variety of cave sublocations over the course of three years. Furthermore, in a microcosm experiment, minerals were incubated in the cave waters for one year. Both endemic cave samples and extracts from the minerals were subjected to 16S rRNA amplicon sequencing. The sequence data show specific community profiles in the different subenvironments, indicating that specialized prokaryotic communities inhabit the different zones in the cave. Already after one year, the different incubated minerals had been colonized by specific microbial communities, indicating that microbes in Movile Cave can adapt in a relatively short timescale to environmental opportunities in terms of energy and nutrients. Life can thrive, diversify and adapt in remote and isolated subterranean environments such as Movile Cave.

4.
NPJ Syst Biol Appl ; 9(1): 53, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898597

RESUMEN

In multicellular organisms cells compete for resources or growth factors. If any one cell type wins, the co-existence of diverse cell types disappears. Existing dynamic Flux Balance Analysis (dFBA) does not accommodate changes in cell density caused by competition. Therefore we here develop 'dynamic competition Flux Balance Analysis' (dcFBA). With total biomass synthesis as objective, lower-growth-yield cells were outcompeted even when cells synthesized mutually required nutrients. Signal transduction between cells established co-existence, which suggests that such 'socialness' is required for multicellularity. Whilst mutants with increased specific growth rate did not outgrow the other cell types, loss of social characteristics did enable a mutant to outgrow the other cells. We discuss that 'asocialness' rather than enhanced growth rates, i.e., a reduced sensitivity to regulatory factors rather than enhanced growth rates, may characterize cancer cells and organisms causing ecological blooms. Therapies reinforcing cross-regulation may therefore be more effective than those targeting replication rates.


Asunto(s)
Biomasa , Competencia Celular , Transducción de Señal
5.
Biosystems ; 232: 104988, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541333

RESUMEN

By analysing a large set of models obtained from the JWS Online and Biomodels databases, we tested to what extent the disequilibrium ratio can be used as an estimator for the flux control of a reaction, a discussion point that was already raised by Kacser and Burns, and Heinrich and Rapoport in their seminal MCA manuscripts. Whereas no functional relation was observed, the disequilibrium ratio can be used as an estimator for the maximal flux control of a reaction step. We extended the original analysis of the relationship by incorporating the overall pathway disequilibrium ratio in the expression, which made it possible to make explicit expressions for flux control coefficients.


Asunto(s)
Modelos Biológicos , Cinética
6.
Biosystems ; 233: 104998, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37591451

RESUMEN

In Microbiology it is often assumed that growth rate is maximal. This may be taken to suggest that the dependence of the growth rate on every enzyme activity is at the top of an inverse-parabolic function, i.e. that all flux control coefficients should equal zero. This might seem to imply that the sum of these flux control coefficients equals zero. According to the summation law of Metabolic Control Analysis (MCA) the sum of flux control coefficients should equal 1 however. And in Flux Balance Analysis (FBA) catabolism is often limited by a hard bound, causing catabolism to fully control the fluxes, again in apparent contrast with a flux control coefficient of zero. Here we resolve these paradoxes (apparent contradictions) in an analysis that uses the 'Edinburgh pathway', the 'Amsterdam pathway', as well as a generic metabolic network providing the building blocks or Gibbs energy for microbial growth. We review and show that (i) optimization depends on so-called enzyme control coefficients rather than the 'catalytic control coefficients' of MCA's summation law, (ii) when optimization occurs at fixed total protein, the former differ from the latter to the extent that they may all become equal to zero in the optimum state, (iii) in more realistic scenarios of optimization where catalytically inert biomass is compensating or maintenance metabolism is taken into consideration, the optimum enzyme concentrations should not be expected to equal those that maximize the specific growth rate, (iv) optimization may be in terms of yield rather than specific growth rate, which resolves the paradox because the sum of catalytic control coefficients on yield equals 0, (v) FBA effectively maximizes growth yield, and for yield the summation law states 0 rather than 1, thereby removing the paradox, (vi) furthermore, FBA then comes more often to a 'hard optimum' defined by a maximum catabolic flux and a catabolic-enzyme control coefficient of 1. The trade-off between maintenance metabolism and growth is highlighted as worthy of further analysis.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Análisis de Flujos Metabólicos
7.
Entropy (Basel) ; 25(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509940

RESUMEN

Confronted with thermodynamically adverse output processes, free-energy transducers may shift to lower gears, thereby reducing output per unit input. This option is well known for inanimate machines such as automobiles, but unappreciated in biology. The present study extends existing non-equilibrium thermodynamic principles to underpin biological gear shifting and identify possible mechanisms. It shows that gear shifting differs from altering the degree of coupling and that living systems may use it to optimize their performance: microbial growth is ultimately powered by the Gibbs energy of catabolism, which is partially transformed into Gibbs energy ('output force') in the ATP that is produced. If this output force is high, the cell may turn to a catabolic pathway with a lower ATP stoichiometry. Notwithstanding the reduced stoichiometry, the ATP synthesis flux may then actually increase as compared to that in a system without gear shift, in which growth might come to a halt. A 'variomatic' gear switching strategy should be optimal, explaining why organisms avail themselves of multiple catabolic pathways, as these enable them to shift gears when the growing gets tough.

8.
J Inherit Metab Dis ; 46(4): 573-585, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36880400

RESUMEN

The inborn error of metabolism phenylketonuria (PKU, OMIM 261600) is most often due to inactivation of phenylalanine hydroxylase (PAH), which converts phenylalanine (Phe) into tyrosine (Tyr). The reduced PAH activity increases blood concentration of phenylalanine and urine levels of phenylpyruvate. Flux balance analysis (FBA) of a single-compartment model of PKU predicts that maximum growth rate should be reduced unless Tyr is supplemented. However, the PKU phenotype is lack of development of brain function specifically, and Phe reduction rather than Tyr supplementation cures the disease. Phe and Tyr cross the blood-brain barrier (BBB) through the aromatic amino acid transporter implying that the two transport reactions interact. However, FBA does not accommodate such competitive interactions. We here report on an extension to FBA that enables it to deal with such interactions. We built a three-compartment model, made the common transport across the BBB explicit, and included dopamine and serotonin synthesis as parts of the brain function to be delivered by FBA. With these ramifications, FBA of the genome-scale metabolic model extended to three compartments does explain that (i) the disease is brain specific, (ii) phenylpyruvate in urine is a biomarker, (iii) excess of blood-phenylalanine rather than shortage of blood-tyrosine causes brain pathology, and (iv) Phe deprivation is the better therapy. The new approach also suggests (v) explanations for differences in pathology between individuals with the same PAH inactivation, and (vi) interference of disease and therapy with the functioning of other neurotransmitters.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilcetonurias/metabolismo , Ácidos Fenilpirúvicos , Fenilalanina Hidroxilasa/genética , Fenilalanina , Tirosina/metabolismo
9.
Beilstein J Org Chem ; 19: 303-316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960304

RESUMEN

The measurement of values of apparent equilibrium constants K' for enzyme-catalyzed reactions involve a substantial number of critical details, neglect of which could lead to systematic errors. Here, interferences, impurities in the substances used, and failure to achieve equilibrium are matters of substantial consequence. Careful reporting of results is of great importance if the results are to have archival value. Thus, attention must be paid to the identification of the substances, specification of the reaction(s), the conditions of reaction, the definition of the equilibrium constant(s) and standard states, the use of standard nomenclature, symbols, and units, and uncertainties. This document contains a general discussion of various aspects of these equilibrium measurements as well as STRENDA (Standards for Reporting Enzymology Data) recommendations regarding the measurements and the reporting of results.

10.
F1000Res ; 112022.
Artículo en Inglés | MEDLINE | ID: mdl-36742342

RESUMEN

In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.


Asunto(s)
Biología de Sistemas , Europa (Continente) , Bases de Datos Factuales
11.
Front Immunol ; 12: 734282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616402

RESUMEN

Germinal center (GC) reactions are vital to the correct functioning of the adaptive immune system, through formation of high affinity, class switched antibodies. GCs are transient anatomical structures in secondary lymphoid organs where specific B cells, after recognition of antigen and with T cell help, undergo class switching. Subsequently, B cells cycle between zones of proliferation and somatic hypermutation and zones where renewed antigen acquisition and T cell help allows for selection of high affinity B cells (affinity maturation). Eventually GC B cells first differentiate into long-lived memory B cells (MBC) and finally into plasma cells (PC) that partially migrate to the bone marrow to encapsulate into long-lived survival niches. The regulation of GC reactions is a highly dynamically coordinated process that occurs between various cells and molecules that change in their signals. Here, we present a system-level perspective of T cell-mediated GC B cell differentiation, presenting and discussing the experimental and computational efforts on the regulation of the GCs. We aim to integrate Systems Biology with B cell biology, to advance elucidation of the regulation of high-affinity, class switched antibody formation, thus to shed light on the delicate functioning of the adaptive immune system. Specifically, we: i) review experimental findings of internal and external factors driving various GC dynamics, such as GC initiation, maturation and GCBC fate determination; ii) draw comparisons between experimental observations and mathematical modeling investigations; and iii) discuss and reflect on current strategies of modeling efforts, to elucidate B cell behavior during the GC tract. Finally, perspectives are specifically given on to the areas where a Systems Biology approach may be useful to predict novel GCBC-T cell interaction dynamics.


Asunto(s)
Linfocitos B/inmunología , Comunicación Celular , Diferenciación Celular , Centro Germinal/inmunología , Activación de Linfocitos , Modelos Inmunológicos , Biología de Sistemas , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/metabolismo , Proliferación Celular , Centro Germinal/citología , Centro Germinal/metabolismo , Humanos , Fenotipo , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Biomolecules ; 11(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805227

RESUMEN

How cancer cells utilize nutrients to support their growth and proliferation in complex nutritional systems is still an open question. However, it is certainly determined by both genetics and an environmental-specific context. The interactions between them lead to profound metabolic specialization, such as consuming glucose and glutamine and producing lactate at prodigious rates. To investigate whether and how glucose and glutamine availability impact metabolic specialization, we integrated computational modeling on the genome-scale metabolic reconstruction with an experimental study on cell lines. We used the most comprehensive human metabolic network model to date, Recon3D, to build cell line-specific models. RNA-Seq data was used to specify the activity of genes in each cell line and the uptake rates were quantitatively constrained according to nutrient availability. To integrated both constraints we applied a novel method, named Gene Expression and Nutrients Simultaneous Integration (GENSI), that translates the relative importance of gene expression and nutrient availability data into the metabolic fluxes based on an observed experimental feature(s). We applied GENSI to study hepatocellular carcinoma addiction to glucose/glutamine. We were able to identify that proliferation, and lactate production is associated with the presence of glucose but does not necessarily increase with its concentration when the latter exceeds the physiological concentration. There was no such association with glutamine. We show that the integration of gene expression and nutrient availability data into genome-wide models improves the prediction of metabolic phenotypes.


Asunto(s)
Medios de Cultivo/metabolismo , Regulación Neoplásica de la Expresión Génica , Biomasa , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Modelos Biológicos , Fosforilación Oxidativa/efectos de los fármacos
13.
NPJ Syst Biol Appl ; 6(1): 34, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106503

RESUMEN

How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories. Notwithstanding its five-fold robustness, it exhibited a relatively sudden breakdown, after some 80 years of virtually steady performance: it predicted aging. PD-related conditions such as lack of DJ-1 protein or increased α-synuclein accelerated the collapse, while antioxidants or caffeine retarded it. Introducing a new concept (aging-time-control coefficient), we found that as many as 25 out of 57 molecular processes controlled aging. We identified new targets for "life-extending interventions": mitochondrial synthesis, KEAP1 degradation, and p62 metabolism.


Asunto(s)
Envejecimiento , Modelos Biológicos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Medicina de Precisión , Especies Reactivas de Oxígeno/metabolismo , Biología Computacional , Humanos , Terapia Molecular Dirigida , Estrés Oxidativo , Enfermedad de Parkinson/fisiopatología
14.
NPJ Syst Biol Appl ; 6(1): 18, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532983

RESUMEN

Using standard systems biology methodologies a 14-compartment dynamic model was developed for the Corona virus epidemic. The model predicts that: (i) it will be impossible to limit lockdown intensity such that sufficient herd immunity develops for this epidemic to die down, (ii) the death toll from the SARS-CoV-2 virus decreases very strongly with increasing intensity of the lockdown, but (iii) the duration of the epidemic increases at first with that intensity and then decreases again, such that (iv) it may be best to begin with selecting a lockdown intensity beyond the intensity that leads to the maximum duration, (v) an intermittent lockdown strategy should also work and might be more acceptable socially and economically, (vi) an initially intensive but adaptive lockdown strategy should be most efficient, both in terms of its low number of casualties and shorter duration, (vii) such an adaptive lockdown strategy offers the advantage of being robust to unexpected imports of the virus, e.g. due to international travel, (viii) the eradication strategy may still be superior as it leads to even fewer deaths and a shorter period of economic downturn, but should have the adaptive strategy as backup in case of unexpected infection imports, (ix) earlier detection of infections is the most effective way in which the epidemic can be controlled, whilst waiting for vaccines.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Epidemias , Neumonía Viral/epidemiología , Biología de Sistemas , COVID-19 , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Humanos , Relaciones Interpersonales , Modelos Estadísticos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión
15.
NPJ Syst Biol Appl ; 6(1): 8, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245958

RESUMEN

Some biological networks exhibit oscillations in their components to convert stimuli to time-dependent responses. The eukaryotic cell cycle is such a case, being governed by waves of cyclin-dependent kinase (cyclin/Cdk) activities that rise and fall with specific timing and guarantee its timely occurrence. Disruption of cyclin/Cdk oscillations could result in dysfunction through reduced cell division. Therefore, it is of interest to capture properties of network designs that exhibit robust oscillations. Here we show that a minimal yeast cell cycle network is able to oscillate autonomously, and that cyclin/Cdk-mediated positive feedback loops (PFLs) and Clb3-centered regulations sustain cyclin/Cdk oscillations, in known and hypothetical network designs. We propose that Clb3-mediated coordination of cyclin/Cdk waves reconciles checkpoint and oscillatory cell cycle models. Considering the evolutionary conservation of the cyclin/Cdk network across eukaryotes, we hypothesize that functional ("healthy") phenotypes require the capacity to oscillate autonomously whereas dysfunctional (potentially "diseased") phenotypes may lack this capacity.


Asunto(s)
Relojes Biológicos/fisiología , Ciclina B/metabolismo , Ciclinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular/genética , División Celular , Ciclina B/genética , Ciclina B/fisiología , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Biología de Sistemas/métodos
16.
Environ Res ; 182: 108948, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841869

RESUMEN

By their definition, inadvertent exposure to endocrine disrupting compounds (EDCs) intervenes with the endocrine signalling system, even at low dose. On the one hand, some EDCs are used as important pharmaceutical drugs that one would not want to dismiss. On the other hand, these pharmaceutical drugs are having off-target effects and increasingly significant exposure to the general population with unwanted health implications. Flutamide, one of the top pharmaceutical products marketed all over the world for the treatment of prostate cancer, is also a pollutant. Its therapeutic action mainly depends on targeting the androgen receptors and inhibiting the androgen action that is essential for growth and survival of prostate tissue. Currently flutamide is of concern with respect to its categorization as an endocrine disruptor. In this work we have developed a physiologically based pharmacokinetic (PBPK) model of flutamide that could serve as a standard tool for its human risk assessment. First we built the model for rat (where many parameters have been measured). The rat PBPK model was extrapolated to human where the re-parameterization involved human-specific physiology, metabolic kinetics derived from in-vitro studies, and the partition coefficient same as the rat model. We have harmonized the model by integrating different sets of in-vitro, in-vivo and physiological data into a PBPK model. Then the model was used to simulate different exposure scenarios and the results were compared against the observed data. Both uncertainty and sensitivity analysis was done. Since this new whole-body PBPK model can predict flutamide concentrations not only in plasma but also in various organs, the model may have clinical applications in efficacy and safety assessment of flutamide. The model can also be used for reverse dosimetry in the context of interpreting the available biomonitoring data to estimate the degree to which the population is currently being exposed, and a tool for the pharmaceutical companies to validate the estimated Permitted Daily Exposure (PDE) for flutamide.


Asunto(s)
Disruptores Endocrinos , Flutamida , Animales , Disruptores Endocrinos/farmacocinética , Flutamida/farmacocinética , Humanos , Cinética , Masculino , Modelos Biológicos , Ratas , Medición de Riesgo
17.
Microorganisms ; 7(8)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398879

RESUMEN

Millions of people worldwide are at risk of arsenic poisoning from their drinking water. In Bangladesh the problem extends to rural drinking water wells, where non-biological solutions are not feasible. In serial enrichment cultures of water from various Bangladesh drinking water wells, we found transfer-persistent arsenite oxidation activity under four conditions (aerobic/anaerobic; heterotrophic/autotrophic). This suggests that biological decontamination may help ameliorate the problem. The enriched microbial communities were phylogenetically at least as diverse as the unenriched communities: they contained a bonanza of 16S rRNA gene sequences. These related to Hydrogenophaga, Acinetobacter, Dechloromonas, Comamonas, and Rhizobium/Agrobacterium species. In addition, the enriched microbiomes contained genes highly similar to the arsenite oxidase (aioA) gene of chemolithoautotrophic (e.g., Paracoccus sp. SY) and heterotrophic arsenite-oxidizing strains. The enriched cultures also contained aioA phylotypes not detected in the previous survey of uncultivated samples from the same wells. Anaerobic enrichments disclosed a wider diversity of arsenite oxidizing aioA phylotypes than did aerobic enrichments. The cultivatable chemolithoautotrophic and heterotrophic arsenite oxidizers are of great interest for future in or ex-situ arsenic bioremediation technologies for the detoxification of drinking water by oxidizing arsenite to arsenate that should then precipitates with iron oxides. The microbial activities required for such a technology seem present, amplifiable, diverse and hence robust.

18.
NPJ Syst Biol Appl ; 5: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993002

RESUMEN

The complex ammonium transport and assimilation network of E. coli involves the ammonium transporter AmtB, the regulatory proteins GlnK and GlnB, and the central N-assimilating enzymes together with their highly complex interactions. The engineering and modelling of such a complex network seem impossible because functioning depends critically on a gamut of data known at patchy accuracy. We developed a way out of this predicament, which employs: (i) a constrained optimization-based technology for the simultaneous fitting of models to heterogeneous experimental data sets gathered through diverse experimental set-ups, (ii) a 'rubber band method' to deal with different degrees of uncertainty, both in experimentally determined or estimated parameter values and in measured transient or steady-state variables (training data sets), (iii) integration of human expertise to decide on accuracies of both parameters and variables, (iv) massive computation employing a fast algorithm and a supercomputer, (v) an objective way of quantifying the plausibility of models, which makes it possible to decide which model is the best and how much better that model is than the others. We applied the new technology to the ammonium transport and assimilation network, integrating recent and older data of various accuracies, from different expert laboratories. The kinetic model objectively ranked best, has E. coli's AmtB as an active transporter of ammonia to be assimilated with GlnK minimizing the futile cycling that is an inevitable consequence of intracellular ammonium accumulation. It is 130 times better than a model with facilitated passive transport of ammonia.


Asunto(s)
Compuestos de Amonio/metabolismo , Biología Computacional/métodos , Redes Reguladoras de Genes/fisiología , Amoníaco/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Transporte Iónico , Cinética , Modelos Biológicos , Nucleotidiltransferasas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Factores de Transcripción/metabolismo
19.
Neural Regen Res ; 14(2): 201-205, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30530998

RESUMEN

The recognition that neurogenesis does not stop with adolescence has spun off research towards the reduction of brain disorders by enhancing brain regeneration. Adult neurogenesis is one of the tougher problems of developmental biology as it requires the generation of complex intracellular and pericellular anatomies, amidst the danger of neuroinflammation. We here review how a multitude of regulatory pathways optimized for early neurogenesis has to be revamped into a new choreography of time dependencies. Distinct pathways need to be regulated, ranging from neural growth factor induced differentiation to mitochondrial bioenergetics, reactive oxygen metabolism, and apoptosis. Requiring much Gibbs energy consumption, brain depends on aerobic energy metabolism, hence on mitochondrial activity. Mitochondrial fission and fusion, movement and perhaps even mitoptosis, thereby come into play. All these network processes are interlinked and involve a plethora of molecules. We recommend a deep thinking approach to adult neurobiology.

20.
Front Immunol ; 10: 3091, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117197

RESUMEN

We here apply a control analysis and various types of stability analysis to an in silico model of innate immunity that addresses the management of inflammation by a therapeutic peptide. Motivation is the observation, both in silico and in experiments, that this therapy is not robust. Our modeling results demonstrate how (1) the biological phenomena of acute and chronic modes of inflammation may reflect an inherently complex bistability with an irrevertible flip between the two modes, (2) the chronic mode of the model has stable, sometimes unique, steady states, while its acute-mode steady states are stable but not unique, (3) as witnessed by TNF levels, acute inflammation is controlled by multiple processes, whereas its chronic-mode inflammation is only controlled by TNF synthesis and washout, (4) only when the antigen load is close to the acute mode's flipping point, many processes impact very strongly on cells and cytokines, (5) there is no antigen exposure level below which reduction of the antigen load alone initiates a flip back to the acute mode, and (6) adding healthy fibroblasts makes the transition from acute to chronic inflammation revertible, although (7) there is a window of antigen load where such a therapy cannot be effective. This suggests that triple therapies may be essential to overcome chronic inflammation. These may comprise (1) anti-immunoglobulin light chain peptides, (2) a temporarily reduced antigen load, and (3a) fibroblast repopulation or (3b) stem cell strategies.


Asunto(s)
Fibroblastos/inmunología , Fibroblastos/metabolismo , Inmunidad Innata , Péptidos/química , Péptidos/inmunología , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Inflamación/etiología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA