Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101234, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38558569

RESUMEN

Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various in vitro, in vivo, and ex vivo models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.

2.
Nat Commun ; 15(1): 1876, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485924

RESUMEN

Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in an ex situ normothermic perfusion system to evaluate a set of fourteen natural and bioengineered adeno-associated viral (AAV) vectors directly in human liver, in the presence and absence of neutralizing human sera. Under non-neutralizing conditions, the recently developed AAV variants, AAV-SYD12 and AAV-LK03, emerged as the most functional variants in terms of cellular uptake and transgene expression. However, when assessed in the presence of human plasma containing anti-AAV neutralizing antibodies (NAbs), vectors of human origin, specifically those derived from AAV2/AAV3b, were extensively neutralized, whereas AAV8- derived variants performed efficiently. This study demonstrates the potential of using normothermic liver perfusion as a model for early-stage testing of liver-focused gene therapies. The results offer preliminary insights that could help inform the development of more effective translational strategies.


Asunto(s)
Dependovirus , Vectores Genéticos , Humanos , Vectores Genéticos/genética , Dependovirus/genética , Anticuerpos Neutralizantes , Hígado , Perfusión
3.
Sci Rep ; 13(1): 21946, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081924

RESUMEN

Adeno-associated viral (AAV) vector-mediated retinal gene therapy is an active field of both pre-clinical as well as clinical research. As with other gene therapy clinical targets, novel bioengineered AAV variants developed by directed evolution or rational design to possess unique desirable properties, are entering retinal gene therapy translational programs. However, it is becoming increasingly evident that predictive preclinical models are required to develop and functionally validate these novel AAVs prior to clinical studies. To investigate if, and to what extent, primary retinal explant culture could be used for AAV capsid development, this study performed a large high-throughput screen of 51 existing AAV capsids in primary human retina explants and other models of the human retina. Furthermore, we applied transgene expression-based directed evolution to develop novel capsids for more efficient transduction of primary human retina cells and compared the top variants to the strongest existing benchmarks identified in the screening described above. A direct side-by-side comparison of the newly developed capsids in four different in vitro and ex vivo model systems of the human retina allowed us to identify novel AAV variants capable of high transgene expression in primary human retina cells.


Asunto(s)
Cápside , Retina , Humanos , Cápside/metabolismo , Retina/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Terapia Genética , Bioingeniería , Dependovirus/metabolismo , Vectores Genéticos/genética , Transducción Genética
4.
Heart Lung Circ ; 32(7): 816-824, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37451880

RESUMEN

Globally, adeno-associated virus (AAV) vectors have been increasingly used for clinical gene therapy trials. In Australia, AAV-based gene therapy is available for hereditary diseases such as retinal dystrophy or spinal muscular atrophy 1 (SMA1). Many preclinical studies have used AAV vectors for gene therapy in models of cardiac disease with outcomes of varying translational potential. However, major barriers to effective and safe therapeutic gene delivery to the human heart remain to be overcome. These include tropism, efficient gene transfer, mitigating off-target gene delivery and avoidance of the host immune response. Developing such an enhanced AAV vector for cardiac gene therapy is of great interest to the field of advanced cardiac therapeutics. In this review, we provide an overview of the approaches currently being employed in the search for cardiac cell-specific AAV capsids, ranging from natural AAVs selected as a result of infection and latency in the heart, to the use of cutting-edge molecular techniques to engineer and select AAVs specific for cardiac cells with the use of high-throughput methods.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Tropismo Viral , Humanos , Dependovirus/fisiología , Vectores Genéticos
5.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927149

RESUMEN

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Asunto(s)
Dependovirus , Hígado , Humanos , Dependovirus/genética , Hígado/metabolismo , Terapia Genética/métodos , Hepatocitos/metabolismo , Proteínas de la Cápside/metabolismo , Tropismo , Vectores Genéticos/genética
6.
Hum Gene Ther ; 33(11-12): 664-682, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35297686

RESUMEN

The power of adeno-associated viral (AAV)-directed evolution for identifying novel vector variants with improved properties is well established, as evidenced by numerous publications reporting novel AAV variants. However, most capsid variants reported to date have been identified using either replication-competent (RC) selection platforms or polymerase chain reaction-based capsid DNA recovery methods, which can bias the selection toward efficient replication or unproductive intracellular trafficking, respectively. A central objective of this study was to validate a functional transduction (FT)-based method for rapid identification of novel AAV variants based on AAV capsid mRNA expression in target cells. We performed a comparison of the FT platform with existing RC strategies. Based on the selection kinetics and function of novel capsids identified in an in vivo screen in a xenograft model of human hepatocytes, we identified the mRNA-based FT selection as the most optimal AAV selection method. Lastly, to gain insight into the mRNA-based selection mechanism driven by the native AAV-p40 promoter, we studied its activity in a range of in vitro and in vivo targets. We found AAV-p40 to be a ubiquitously active promoter that can be modified for cell-type-specific expression by incorporating binding sites for silencing transcription factors, allowing for cell-type-specific library selection.


Asunto(s)
Dependovirus , Vectores Genéticos , Bioingeniería , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/metabolismo , Vectores Genéticos/genética , Humanos , ARN Mensajero , Transducción Genética , Transgenes
7.
Mol Ther Methods Clin Dev ; 24: 88-101, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34977275

RESUMEN

Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. Here, we report the bioengineering of a set of next-generation AAV vectors, named AAV-SYDs (where "SYD" stands for Sydney, Australia), with increased human hepato-tropism in a liver xenograft mouse model repopulated with primary human hepatocytes. We followed a two-step process that staggered directed evolution and domain-swapping approaches. Using DNA-family shuffling, we first mapped key AAV capsid regions responsible for efficient human hepatocyte transduction in vivo. Focusing on these regions, we next applied domain-swapping strategies to identify and study key capsid residues that enhance primary human hepatocyte uptake and transgene expression. Our findings underscore the potential of AAV-SYDs as liver gene therapy vectors and provide insights into the mechanism responsible for their enhanced transduction profile.

8.
Sci Transl Med ; 12(560)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908003

RESUMEN

Recent clinical successes in gene therapy applications have intensified interest in using adeno-associated viruses (AAVs) as vectors for therapeutic gene delivery. Although prototypical AAV2 shows robust in vitro transduction of human hepatocyte-derived cell lines, it has not translated into an effective vector for liver-directed gene therapy in vivo. This is consistent with observations made in Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice with humanized livers, showing that AAV2 functions poorly in this xenograft model. Here, we derived naturally hepatotropic AAV capsid sequences from primary human liver samples. We demonstrated that capsid mutations, likely acquired as an unintentional consequence of tissue culture propagation, attenuated the intrinsic human hepatic tropism of natural AAV2 and related human liver AAV isolates. These mutations resulted in amino acid changes that increased binding to heparan sulfate proteoglycan (HSPG), which has been regarded as the primary cellular receptor mediating AAV2 infection of human hepatocytes. Propagation of natural AAV variants in vitro showed tissue culture adaptation with resulting loss of tropism for human hepatocytes. In vivo readaptation of the prototypical AAV2 in FRG mice with a humanized liver resulted in restoration of the intrinsic hepatic tropism of AAV2 through decreased binding to HSPG. Our results challenge the notion that high affinity for HSPG is essential for AAV2 entry into human hepatocytes and suggest that natural AAV capsids of human liver origin are likely to be more effective for liver-targeted gene therapy applications than culture-adapted AAV2.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Cápside , Dependovirus/genética , Humanos , Hígado , Ratones , Transducción Genética , Tropismo
9.
Mol Ther Methods Clin Dev ; 17: 1139-1154, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32490035

RESUMEN

Use of the prototypical adeno-associated virus type 2 (AAV2) capsid delivered unexpectedly modest efficacy in an early liver-targeted gene therapy trial for hemophilia B. This result is consistent with subsequent data generated in chimeric mouse-human livers showing that the AAV2 capsid transduces primary human hepatocytes in vivo with low efficiency. In contrast, novel variants generated by directed evolution in the same model, such as AAV-NP59, transduce primary human hepatocytes with high efficiency. While these empirical data have immense translational implications, the mechanisms underpinning this enhanced AAV capsid transduction performance in primary human hepatocytes are yet to be fully elucidated. Remarkably, AAV-NP59 differs from the prototypical AAV2 capsid by only 11 aa and can serve as a tool to study the correlation between capsid sequence/structure and vector function. Using two orthogonal vectorological approaches, we have determined that just 2 of the 11 changes present in AAV-NP59 (T503A and N596D) account for the enhanced transduction performance of this capsid variant in primary human hepatocytes in vivo, an effect that we have associated with attenuation of heparan sulfate proteoglycan (HSPG) binding affinity. In support of this hypothesis, we have identified, using directed evolution, two additional single amino acid substitution AAV2 variants, N496D and N582S, which are highly functional in vivo. Both substitution mutations reduce AAV2's affinity for HSPG. Finally, we have modulated the ability of AAV8, a highly murine-hepatotropic serotype, to interact with HSPG. The results support our hypothesis that enhanced HSPG binding can negatively affect the in vivo function of otherwise strongly hepatotropic variants and that modulation of the interaction with HSPG is critical to ensure maximum efficiency in vivo. The insights gained through this study can have powerful implications for studies into AAV biology and capsid development for preclinical and clinical applications targeting liver and other organs.

10.
Mol Ther ; 28(4): 1016-1032, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32105604

RESUMEN

Display of short peptides on the surface of adeno-associated viruses (AAVs) is a powerful technology for the generation of gene therapy vectors with altered cell specificities and/or transduction efficiencies. Following its extensive prior use in the best characterized AAV serotype 2 (AAV2), recent reports also indicate the potential of other AAV isolates as scaffolds for peptide display. In this study, we systematically explored the respective capacities of 13 different AAV capsid variants to tolerate 27 peptides inserted on the surface followed by production of reporter-encoding vectors. Single-round screening in pre-arrayed 96-well plates permitted rapid and simple identification of superior vectors in >90 cell types, including T cells and primary cells. Notably, vector performance depended not only on the combination of capsid, peptide, and cell type, but also on the position of the inserted peptide and the nature of flanking residues. For optimal data availability and accessibility, all results were assembled in a searchable online database offering multiple output styles. Finally, we established a reverse-transduction pipeline based on vector pre-spotting in 96- or 384-well plates that facilitates high-throughput library panning. Our comprehensive illustration of the vast potential of alternative AAV capsids for peptide display should accelerate their in vivo screening and application as unique gene therapy vectors.


Asunto(s)
Dependovirus/genética , Péptidos/metabolismo , Análisis de Matrices Tisulares/métodos , Terapia Genética , Vectores Genéticos , Humanos , Biblioteca de Péptidos , Péptidos/genética , Transducción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Hum Gene Ther ; 31(9-10): 575-589, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32000541

RESUMEN

Adeno-associated virus (AAV) vectors are quickly becoming the vectors of choice for therapeutic gene delivery. To date, hundreds of natural isolates and bioengineered variants have been reported. While factors such as high production titer and low immunoreactivity are important to consider, the ability to deliver the genetic payload (physical transduction) and to drive high transgene expression (functional transduction) remains the most important feature when selecting AAV variants for clinical applications. Reporter expression assays are the most commonly used methods for determining vector fitness. However, such approaches are time consuming and become impractical when evaluating a large number of variants. Limited access to primary human tissues or challenging model systems further complicates vector testing. To address this problem, convenient high-throughput methods based on next-generation sequencing (NGS) are being developed. To this end, we built an AAV Testing Kit that allows inherent flexibility in regard to number and type of AAV variants included, and is compatible with in vitro, ex vivo, and in vivo applications. The Testing Kit presented here consists of a mix of 30 known AAVs where each variant encodes a CMV-eGFP cassette and a unique barcode in the 3'-untranslated region of the eGFP gene, allowing NGS-barcode analysis at both the DNA and RNA/cDNA levels. To validate the AAV Testing Kit, individually packaged barcoded variants were mixed at an equal ratio and used to transduce cells/tissues of interest. DNA and RNA/cDNA were extracted and subsequently analyzed by NGS to determine the physical/functional transduction efficiencies. We were able to assess the transduction efficiencies of immortalized cells, primary cells, and induced pluripotent stem cells in vitro, as well as in vivo transduction in naïve mice and a xenograft liver model. Importantly, while our data validated previously reported transduction characteristics of individual capsids, we also identified novel previously unknown tropisms for some AAV variants.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Cápside/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , ADN Viral , Femenino , Fibroblastos , Técnicas de Transferencia de Gen , Terapia Genética , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Receptor EphB2 , Linfocitos T , Transducción Genética , Transgenes
12.
Mol Ther Methods Clin Dev ; 12: 71-84, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30534580

RESUMEN

Adeno-associated virus (AAV) vectors have become one of the most widely used gene transfer tools in human gene therapy. Considerable effort is currently being focused on AAV capsid engineering strategies with the aim of developing novel variants with enhanced tropism for specific human cell types, decreased human seroreactivity, and increased manufacturability. Selection strategies based on directed evolution rely on the generation of highly variable AAV capsid libraries using methods such as DNA-family shuffling, a technique reliant on stretches of high DNA sequence identity between input parental capsid sequences. This identity dependence for reassembly of shuffled capsids is inherently limiting and results in decreased shuffling efficiency as the phylogenetic distance between parental AAV capsids increases. To overcome this limitation, we have developed a novel codon-optimization algorithm that exploits evolutionarily defined codon usage at each amino acid residue in the parental sequences. This method increases average sequence identity between capsids, while enhancing the probability of retaining capsid functionality, and facilitates incorporation of phylogenetically distant serotypes into the DNA-shuffled libraries. This technology will help accelerate the discovery of an increasingly powerful repertoire of AAV capsid variants for cell-type and disease-specific applications.

13.
Neurochem Res ; 42(1): 294-305, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433380

RESUMEN

Metformin is the most frequently used drug for the treatment of type 2 diabetes in humans. However, only little is known about effects of metformin on brain metabolism. To investigate potential metabolic consequences of an exposure of brain cells to metformin, we incubated rat astrocyte-rich primary cultures with this compound. Metformin in concentrations of up to 30 mM did not acutely compromise the viability of astrocytes, but caused a time- and concentration-dependent increase in cellular glucose consumption and lactate production. For acute incubations in the hour range, the presence of 10 mM metformin doubled the glycolytic flux, while already 1 mM metformin doubled glycolytic flux during incubation for 24 h. In addition to metformin, also other guanidino compounds increased astrocytic lactate production. After 4 h of incubation, half-maximal stimulation of glycolysis was observed for metformin, guanidine and phenformin at concentrations of around 3 mM, 3 mM and 30 µM, respectively. The acute stimulation of glycolytic lactate production by metformin was persistent after removal of extracellular metformin and was also observed, if glucose was absent from the incubation medium or replaced by other hexoses. The metformin-induced stimulation of glycolytic flux was not prevented by compound C, an inhibitor of AMP-dependent protein kinase, nor was it additive to the stimulation of glycolytic flux caused by respiratory chain inhibitors. These data demonstrate that the antidiabetic drug metformin has the potential to strongly activate glycolytic lactate production in brain astrocytes.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Hipoglucemiantes/farmacología , Ácido Láctico/biosíntesis , Metformina/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glucólisis/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA