Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 103(2): 151408, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583306

RESUMEN

BACKGROUND: Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells. METHODS: Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA. RESULTS: By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality. CONCLUSION: ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.


Asunto(s)
Bronquios , Células Epiteliales , Receptores Odorantes , Humanos , Células Epiteliales/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Bronquios/metabolismo , Bronquios/patología , Células A549 , Interleucina-8/metabolismo , Calcio/metabolismo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Proliferación Celular , Acroleína/análogos & derivados , Acroleína/farmacología
2.
Curr Opin Microbiol ; 79: 102455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522265

RESUMEN

Hepatic sequelae are frequently reported in coronavirus disease 2019 cases and are correlated with increased disease severity. Therefore, a detailed exploration of host factors contributing to hepatic impairment and ultimately infection outcomes in patients is essential for improved clinical management. The causes of hepatic injury are not limited to drug-mediated toxicity or aberrant host inflammatory responses. Indeed, multiple studies report the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in liver autopsies and the susceptibility of explanted human hepatocytes to infection. In this review, we confirm that hepatic cells express an extensive range of factors implicated in SARS-CoV-2 entry. We also provide an overview of studies reporting evidence for direct infection of liver cell types and the infection-induced cell-intrinsic processes that likely contribute to hepatic impairment.


Asunto(s)
COVID-19 , Hepatocitos , Hígado , SARS-CoV-2 , Tropismo Viral , Internalización del Virus , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , COVID-19/virología , Hígado/virología , Hígado/patología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...