Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 217: 118436, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447571

RESUMEN

As coastal areas become more vulnerable to climatic impacts, the need for understanding estuarine carbon budgets with sufficient spatiotemporal resolution arises. Under various hydrologic extremes ranging from drought to hurricane-induced flooding, a mass balance model was constructed for carbon fluxes and their variabilities in four estuaries along the northwestern Gulf of Mexico (nwGOM) coast over a four-year period (2014-2018). Loading of total organic carbon (TOC) and dissolved inorganic carbon (DIC) to estuaries included riverine discharge and lateral exchange from tidal wetlands. The lateral exchanges of TOC and DIC reached 4.5 ± 5.7 and 8.9 ± 1.4 mol·C·m-2·yr-1, accounting for 86.5% and 62.7% of total TOC and DIC inputs into these estuaries, respectively. A relatively high regional CO2 efflux (4.0 ± 0.7 mol·C·m-2·yr-1) was found, which was two times the average value in North American coastal estuaries reported in the literature. Oceanic export was the major pathway for losses of TOC (5.6 ± 1.7 mol·C·m-2·yr-1, 81.2% of total) and DIC (9.9 ± 2.9 mol·C·m-2·yr-1, 69.7% of total). The carbon budget exhibited high variability in response to hydrologic changes. For example, storm or hurricane induced flooding elevated CO2 efflux by 2-10 times in short periods of time. Flood following a drought also increased lateral TOC exchange (from -3.5 ± 4.7 to 67.8 ± 17.6 mmol·C·m-2·d-1) but decreased lateral DIC exchange (from 28.9 ± 3.5 to -7.1 ± 7.6 mmol·C·m-2·d-1). The large variability of carbon budgets highlights the importance of high-resolution spatiotemporal coverage under different hydrologic conditions, and the importance of carbon contribution from tidal wetlands to coastal carbon cycling.


Asunto(s)
Carbono , Humedales , Carbono/análisis , Dióxido de Carbono , Hidrología
2.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235355

RESUMEN

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

3.
Sci Total Environ ; 807(Pt 2): 150825, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627882

RESUMEN

During the recent COVID-19 related quarantine period, anecdotal evidence emerged pointing to a rapid, sharp improvement in water quality in some localities. Here we present results from an analysis of the impacts of the COVID-19 quarantine period using two long-term coastal water quality datasets. These datasets rely on sampling that operates at appropriate timescales to quantify the influence of reduced human activity on coastal water quality and span coastal ecosystems ranging from low human influence to highly urbanized systems. We tested two hypotheses: 1) reduced tourism during the COVID-19 quarantine period would lead to improved coastal water quality, and 2) water quality improvements would scale to the level of human influence, meaning that highly urbanized or tourist-centric watersheds would see greater improvement than more rural watersheds. A localized reduction in fecal indicator bacteria was observed in four highly impacted regions of the Texas (USA) coast, but this pattern was not widespread. In less impacted regions, the signature of natural, decadal environmental variability (e.g., dissolved oxygen and turbidity) overwhelmed any potential signature of reduced human activity. Results from this study add to the growing body of literature on the environmental impacts of the COVID-19 quarantine period, and when considered with existing literature, emphasize that coastal water quality improvements appear to be ephemeral and reserved for the most severely affected (by human activity) systems. Furthermore, results show the importance of assessing COVID-19 signatures against long-term, decadal datasets that adequately reveal a system's natural variation.


Asunto(s)
COVID-19 , Cuarentena , Calidad del Agua , Ecosistema , Humanos , Texas
4.
Mar Pollut Bull ; 166: 112231, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33798816

RESUMEN

Long-term assessments are needed to identify water quality trends and their socio-environmental drivers for coastal management and watershed restoration. This study provides the first long-term assessment of fecal bacterial pollution in the northwestern Gulf of Mexico using enterococci data spanning the Texas coast from 2009 to 2020. The data were representative of 66 beaches, 169 stations, and over 75,000 samples. Findings demonstrate that 22 beaches are 'hotspots' of pollution and experienced enterococci levels that frequently exceeded the USEPA beach action value. Further, enterococci were correlated with time, population size, and sea level. Weak correlations detected in some counties highlight the multifactorial nature of water quality; additional factors are likely influencing enterococci levels. The correlation with sea level is concerning, as counties vulnerable to sea level rise frequently reported enterococci concentrations exceeding the beach action value. In consideration of sea level rise predictions, targeted studies are needed to pinpoint drivers of fecal pollution.


Asunto(s)
Playas , Calidad del Agua , Monitoreo del Ambiente , Heces , Golfo de México , Elevación del Nivel del Mar , Texas , Microbiología del Agua , Contaminación del Agua/análisis
5.
PLoS One ; 15(9): e0239309, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946494

RESUMEN

Limited data coverage on harmful algal blooms (HABs) in some regions makes assessment of long-term trends difficult, and also impedes understanding of bloom ecology. Here, observations reported in a local newspaper were combined with cell count and environmental data from resource management agencies to assess trends in Karenia brevis "red tide" frequency and duration in the Nueces Estuary (Texas) and adjacent coastal waters, and to determine relationships with environmental factors. Based on these analyses, the Coastal Bend region of the Texas coast has experienced a significant increase in the frequency of red tide blooms since the mid-1990s. Salinity was positively correlated with red tide occurrence in the Nueces Estuary, and a documented long-term increase in salinity of the Nueces Estuary may be a major factor in the long-term increase in bloom frequency. This suggests that freshwater inflow management efforts in Texas should consider impacts on red tide habitat suitability (i.e., salinity regime) in downstream estuaries. Natural climate variability such as the El Niño-Southern Oscillation, which is strongly related to rainfall and salinity in Central and South Texas, was also an influential predictor of red tide presence/absence. Though no significant change in the duration of blooms was detected, there was a negative correlation between duration and temperature. Specifically, summer-like temperatures were not favorable to K. brevis bloom development. The relationships found here between red tide frequency/duration and environmental drivers present a new avenue of research that will aid in refining monitoring and forecasting efforts for red tides on the Texas coast and elsewhere. Findings also highlight the importance of factors (i.e., salinity, temperature) that are likely to be altered in the future due to both population growth in coastal watersheds and anthropogenic climate change.


Asunto(s)
Dinoflagelados/crecimiento & desarrollo , Ecología , Floraciones de Algas Nocivas , Cambio Climático , Dinoflagelados/patogenicidad , Predicción , Golfo de México , Salinidad , Temperatura , Texas
6.
Mar Pollut Bull ; 152: 110903, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31957680

RESUMEN

Coastal watersheds in Texas have experienced significant human population growth over the past several decades, yet there have been no comprehensive assessments of water quality trends in Texas estuaries. Here, analysis of historical estuarine water quality data indicates regional "hot spots" of change. Galveston Bay and Oso Bay, which have highly urbanized watersheds, currently exhibit symptoms of eutrophication. Symptoms of eutrophication were also found in the Baffin Bay-Upper Laguna Madre complex, which has a sparsely populated but agriculturally-intensive watershed. Increasing salinity was observed in estuaries of the central Texas coast and are attributed to long-term decreases in freshwater inflow. Another artifact of decreasing freshwater inflow is a reduction in the delivery of carbonate minerals to estuaries, which manifests as decreases in pH. With findings from this study, targeted studies can now be directed at the estuaries that are experiencing water quality degradation in order to guide future management efforts.


Asunto(s)
Estuarios , Calidad del Agua , Eutrofización , Agua Dulce , Humanos , Texas
7.
Harmful Algae ; 89: 101669, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31672237

RESUMEN

Once limited to the Laguna Madre of Texas, blooms of the brown tide organism, Aureoumbra lagunensis, have recently been reported elsewhere. Previous studies have focused on the role of extreme hypersalinity and lack of grazing pressure as facilitators of brown tide blooms. However, development of blooms in systems that are not experiencing extreme hypersalinity, and also that are undergoing eutrophication, suggests that our understanding of A. lagunensis bloom dynamics requires additional refinement. The goal of this study was to quantify the spatial-temporal distribution of, and potential controls upon, A. lagunensis in Baffin Bay, Texas. Five sites were sampled monthly over a three-year period, encompassing nearly two years of drought and hypersaline conditions, followed by a high rainfall, lower salinity period. A. lagunensis abundances were higher during drought in May 2013 - March 2015 compared to the higher rainfall period of April 2015 - April 2016. Abundances typically peaked in summer months, though the seasonal pattern was disrupted in 2015 during the shift from high to low salinity conditions. Persistently high abundances of A. lagunensis were observed in the Laguna Salada tributary of Baffin Bay, which typically has higher dissolved organic nitrogen concentrations and may be less well flushed than other parts of Baffin Bay. Thus this location may serve as a reservoir for A. lagunensis in the system. Overall, A. lagunensis abundance was positively correlated with DOC and salinity, and negatively correlated with ammonium, orthophosphate, and ciliate biovolume. These results suggest a variety of physical, chemical and biological factors affect A. lagunensis population dynamics and stress the need for more research on nutrient-A. lagunensis relationships.


Asunto(s)
Bahías , Estramenopilos , Eutrofización , Salinidad , Texas
8.
Environ Sci Technol ; 52(22): 13004-13014, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30346150

RESUMEN

There is a strong need to understand sources of organic matter in coastal lagoons because these systems often have long water residence times, are susceptible to eutrophication, and display symptoms such as low-oxygen conditions. We found that integrated dissolved oxygen (DO) consumption in the water column accounted for 67-73% of total DO consumption in two eutrophic coastal lagoons (Baffin Bay and Oso Bay) in the northwestern Gulf of Mexico. The δ13C of particulate organic carbon (δ13CPOC) showed temporal variations that corresponded with hydrological condition changes in Baffin Bay but fewer temporal changes in Oso Bay, whereas the lower δ15NPON values in Baffin Bay indicated more agricultural influence than in Oso Bay, where urban sewage influences dominated. Based on closed-system incubation experiments, water-column respiration in Baffin Bay was driven by the respiration of a combination of phytoplankton, carbon from near-shore and benthic macrophytes, and other allochthonous organic carbon sources depending on hydrological conditions. However, respiration of algal carbon dominated DO consumption in Baffin Bay sediments. In comparison, Oso Bay water-column respiration was largely attributed to the degradation of phytoplankton, the growth of which was sustained by nutrient discharge from wastewater treatment plants in the watershed. In contrast to the water column, seagrass and saltmarsh carbon appeared to be the primary organic carbon source that drove DO consumption in Oso Bay sediments. These observations highlight the complexity of organic carbon sources that contribute to DO consumption in estuaries affected by human activities, especially in systems with long water residence times that can retain both organic matter and nutrients for extended periods of time.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Estuarios , Sedimentos Geológicos , Golfo de México , Humanos , Consumo de Oxígeno
9.
PLoS One ; 11(8): e0160663, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27504970

RESUMEN

Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also reflect taxa-specific responses nitrogen availability. Finally, this study demonstrates that under nitrogen-limiting conditions, the phytoplankton community and its various taxa are capable of using both urea and nitrate to support growth.


Asunto(s)
Estuarios , Nitrógeno/farmacología , Fitoplancton/efectos de los fármacos , Fitoplancton/crecimiento & desarrollo , Nitrógeno/química , North Carolina
10.
Mar Pollut Bull ; 104(1-2): 44-53, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876558

RESUMEN

Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (<8), were observed in a region of Oso Bay that receives wastewater effluent. Despite being shallow (<1 m) and subjected to strong winds on a regular basis, this region also exhibited episodic hypoxia/anoxia. The low oxygen and pH conditions are likely to impose significant stress on benthic organisms and nekton in the affected area. Signatures of eutrophied water were occasionally observed at the mouth of Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication.


Asunto(s)
Estuarios , Urbanización , Calidad del Agua/normas , Bahías/química , Clorofila/análisis , Eutrofización , Oxígeno/análisis , Texas
11.
Mar Pollut Bull ; 69(1-2): 7-18, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23474351

RESUMEN

Recent climate observations suggest that extreme climatic events (ECE; droughts, floods, tropical cyclones, heat waves) have increased in frequency and/or intensity in certain world regions, consistent with climate model projections that account for man's influence on the global climate system. A synthesis of existing literature is presented and shows that ECE affect estuarine water quality by altering: (1) the delivery and processing of nutrients and organic matter, (2) physical-chemical properties of estuaries, and (3) ecosystem structure and function. From the standpoint of estuarine scientists and resource managers, a major scientific challenge will be to project the estuarine response to ECE that will co-occur with other important environmental changes (i.e., natural climate variability, global warming, sea level rise, eutrophication), as this will affect the provisioning of important ecosystem services provided by estuaries.


Asunto(s)
Clima , Estuarios , Calidad del Agua , Sequías , Ecología , Calentamiento Global
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...