Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; : e17348, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597329

RESUMEN

Organisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure. Due to the high degree of complexity involved in diapause, substantial cellular regulation is required, of which our understanding primarily derives from the transcriptome via messenger RNA expression dynamics. Here we aim to advance our understanding of diapause by investigating microRNA (miRNA) expression in diapausing and direct developing pupae of the butterfly Pieris napi. We identified coordinated patterns of miRNA expression throughout diapause in both head and abdomen tissues of pupae, and via miRNA target identification, found several expression patterns to be enriched for relevant diapause-related physiological processes. We also identified two candidate miRNAs, miR-14-5p and miR-2a-3p, that are likely involved in diapause progression through their activity in the ecdysone pathway, a critical regulator of diapause termination. miR-14-5p targets phantom, a gene in the ecdysone synthesis pathway, and is upregulated early in diapause. miR-2a-3p has been found to be expressed in response to ecdysone, and is upregulated during diapause termination. Together, the expression patterns of these two miRNAs match our current understanding of the timing of hormonal regulation of diapause in P. napi and provide interesting candidates to further explore the mechanistic role of microRNAs in diapause regulation.

2.
Heredity (Edinb) ; 132(3): 142-155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291272

RESUMEN

Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.


Asunto(s)
Mariposas Diurnas , Diapausa de Insecto , Diapausa , Animales , Diapausa de Insecto/fisiología , ADN Recombinante/metabolismo , Mariposas Diurnas/genética , Adaptación Fisiológica
3.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38069680

RESUMEN

The neritid snail Theodoxus fluviatilis is found across habitats differing in salinity, from shallow waters along the coast of the Baltic Sea to lakes throughout Europe. Living close to the water surface makes this species vulnerable to changes in salinity in their natural habitat, and the lack of a free-swimming larval stage limits this species' dispersal. Together, these factors have resulted in a patchy distribution of quite isolated populations differing in their salinity tolerances. In preparation for investigating the mechanisms underlying the physiological differences in osmoregulation between populations that cannot be explained solely by phenotypic plasticity, we present here an annotated draft genome assembly for T. fluviatilis, generated using PacBio long reads, Illumina short reads, and transcriptomic data. While the total assembly size (1045 kb) is similar to those of related species, it remains highly fragmented (N scaffolds = 35,695; N50 = 74 kb) though moderately high in complete gene content (BUSCO single copy complete: 74.3%, duplicate: 2.6%, fragmented: 10.6%, missing: 12.5% using metazoa n = 954). Nevertheless, we were able to generate gene annotations of 21,220 protein-coding genes (BUSCO single copy complete: 65.1%, duplicate: 16.7%, fragmented: 9.1%, missing: 9.1% using metazoa n = 954). Not only will this genome facilitate comparative evolutionary studies across Gastropoda, as this is the first genome assembly for the basal snail family Neritidae, it will also greatly facilitate the study of salinity tolerance in this species. Additionally, we discuss the challenges of working with a species where high molecular weight DNA isolation is very difficult.


Asunto(s)
Genoma , Caracoles , Animales , Caracoles/genética , Europa (Continente) , Anotación de Secuencia Molecular , Perfilación de la Expresión Génica
4.
BMC Genomics ; 24(1): 169, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016295

RESUMEN

Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-ß, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Pigmentación/genética , Alas de Animales/metabolismo , Perfilación de la Expresión Génica , Pupa
5.
Sci Adv ; 9(12): eabq3713, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947619

RESUMEN

Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.


Asunto(s)
Mariposas Diurnas , Rasgos de la Historia de Vida , Animales , Femenino , Filogenia , Mariposas Diurnas/genética , Estudio de Asociación del Genoma Completo , Evolución Biológica
6.
Evolution ; 77(2): 519-533, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625474

RESUMEN

In this study, we investigated whether patterns of gene expression in larvae feeding on different plants can explain important aspects of the evolution of insect-plant associations, such as phylogenetic conservatism of host use and re-colonization of ancestral hosts that have been lost from the host repertoire. To this end, we performed a phylogenetically informed study comparing the transcriptomes of 4 nymphalid butterfly species in Polygonia and the closely related genus Nymphalis. Larvae were reared on Urtica dioica, Salix spp., and Ribes spp. Plant-specific gene expression was found to be similar across butterfly species, even in the case of host plants that are no longer used by two of the butterfly species. These results suggest that plant-specific transcriptomes can be robust over evolutionary time. We propose that adaptations to particular larval food plants can profitably be understood as an evolved set of modules of co-expressed genes, promoting conservatism in host use and facilitating re-colonization. Moreover, we speculate that the degree of overlap between plant-specific transcriptomes may correlate with the strength of trade-offs between plants as resources and hence to the probability of colonizing hosts and complete host shifts.


Asunto(s)
Mariposas Diurnas , Transcriptoma , Animales , Larva/genética , Filogenia , Mariposas Diurnas/genética , Aclimatación
7.
Mol Ecol Resour ; 23(4): 872-885, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36533297

RESUMEN

The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Adaptación Fisiológica , Fenotipo , Genómica , Cromosomas/genética
8.
Proc Natl Acad Sci U S A ; 119(51): e2208447119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508662

RESUMEN

Coevolutionary interactions are responsible for much of the Earth's biodiversity, with key innovations driving speciation bursts on both sides of the interaction. One persistent question is whether macroevolutionary traits identified as key innovations accurately predict functional performance and selection dynamics within species, as this necessitates characterizing their function, investigating their fitness consequences, and exploring the selection dynamics acting upon them. Here, we used CRISPR-Cas9 mediating nonhomologous end joining (NHEJ) in the butterfly species Pieris brassicae to knock out and directly assess the function and fitness impacts of nitrile specifier protein (NSP) and major allergen (MA). These are two closely related genes that facilitate glucosinolate (GSL) detoxification capacity, which is a key innovation in mustard feeding Pierinae butterflies. We find NSP and MA are both required for survival on plants containing GSLs, with expression differences arising in response to variable GSL profiles, concordant with detoxification performance. Importantly, this concordance was only observed when using natural host plants, likely reflecting the complexity of how these enzymes interact with natural plant variation in GSLs and myrosinases. Finally, signatures of positive selection for NSP and MA were detected across Pieris species, consistent with these genes' importance in recent coevolutionary interactions. Thus, the war between these butterflies and their host plants involves more than the mere presence of chemical defenses and detoxification mechanisms, as their regulation and activation represent key components of complex interactions. We find that inclusion of these dynamics, in ecologically relevant assays, is necessary for coevolutionary insights in this system and likely others.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Glucosinolatos/metabolismo , Aceites de Plantas
9.
Mol Ecol ; 31(22): 5649-5652, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217577

RESUMEN

How organisms that are part of the same trophic network respond to environmental variability over small spatial scales has been studied in a multitude of systems. Prevailing theory suggests a large role for plasticity in key traits among interacting species that allows matching of life cycles or life-history traits across environmental gradients, for instance insects tracking host-plant phenology across variable environments (Posledovich et al. 2018). A key aspect that remains understudied is the extent of intrapopulation variability in plasticity and whether stressful conditions canalize plasticity to an optimal level, or alternatively if variation in plasticity indeed could increase fitness in itself via alternative strategies. In a From the Cover article in this issue of Molecular Ecology, Kahilainen et al. (2022) investigate this issue in a classical insect study system, the metapopulation of the Glanville fritillary butterfly (Melitea cinxia) in the Åland archipelago of Finland. The authors first establish how a key host plant responds to water limitation, then quantify among-family variation in larval growth and development across control and water-limited host plants. Finally, they use RNA sequencing to gain mechanistic insights into some of these among-family differences in larval performance in response to host-plant variation, finding results suggesting the existence of heritable, intrapopulation variability in ecologically relevant plasticity. This final step represents a critically important and often overlooked component of efforts to predict sensitivity of biological systems to changing environmental conditions, since it provides a key metric of adaptive resilience present in the system.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Agua , Larva/fisiología , Estadios del Ciclo de Vida , Fenotipo
10.
Insect Biochem Mol Biol ; 149: 103833, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084800

RESUMEN

Diapause, a general shutdown of developmental pathways, is a vital adaptation allowing insects to adjust their life cycle to adverse environmental conditions such as winter. Diapause in the pupal stage is regulated by the major developmental hormones prothoracicotropic hormone (PTTH) and ecdysone. Termination of pupal diapause in the butterfly Pieris napi depends on low temperatures; therefore, we study the temperature-dependence of PTTH secretion and ecdysone sensitivity dynamics throughout diapause, with a focus on diapause termination. While PTTH is present throughout diapause in the cell bodies of two pairs of neurosecretory cells in the brain, it is absent in the axons, and the PTTH concentration in the haemolymph is significantly lower during diapause than during post diapause development, indicating that the PTTH signaling is reduced during diapause. The sensitivity of pupae to ecdysone injections is dependent on diapause stage. While pupae are sensitive to ecdysone during early diapause initiation, they gradually lose this sensitivity and become insensitive to non-lethal concentrations of ecdysone about 30 days into diapause. At low temperatures, reflecting natural overwintering conditions, diapause termination propensity after ecdysone injection is precocious compared to controls. In stark contrast, at high temperatures reflecting late summer and early autumn conditions, sensitivity to ecdysone does not return. Thus, here we show that PTTH secretion is reduced during diapause, and additionally, that the low ecdysone sensitivity of early diapause maintenance is lost during termination in a temperature dependent manner. The link between ecdysone sensitivity and low-temperature dependence reveals a putative mechanism of how diapause termination operates in insects that is in line with adaptive expectations for diapause.


Asunto(s)
Mariposas Diurnas , Diapausa de Insecto , Diapausa , Hormonas de Insectos , Animales , Mariposas Diurnas/metabolismo , Ecdisona/metabolismo , Hormonas de Insectos/metabolismo , Insectos/metabolismo , Pupa , Temperatura
11.
Trends Ecol Evol ; 37(12): 1104-1115, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35914975

RESUMEN

Most studies in the field of ecology and evolution aiming to connect genotype to phenotype rarely validate identified loci using functional tools. Recent developments in RNA interference (RNAi) and clustered regularly interspaced palindromic repeats (CRISPR)-Cas genome editing have dramatically increased the feasibility of functional validation. However, these methods come with specific challenges when applied to emerging model organisms, including limited spatial control of gene silencing, low knock-in efficiencies, and low throughput of functional validation. Moreover, many functional studies to date do not recapitulate ecologically relevant variation, and this limits their scope for deeper insights into evolutionary processes. We therefore argue that increased use of gene editing by allelic replacement through homology-directed repair (HDR) would greatly benefit the field of ecology and evolution.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Genómica/métodos , Fenotipo
13.
Genome Biol Evol ; 14(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35876165

RESUMEN

Insects have been key players in the assessments of biodiversity impacts of anthropogenically driven environmental change, including the evolutionary and ecological impacts of climate change. Populations of Edith's Checkerspot Butterfly (Euphydryas editha) adapt rapidly to diverse environmental conditions, with numerous high-impact studies documenting these dynamics over several decades. However, studies of the underlying genetic bases of these responses have been hampered by missing genomic resources, limiting the ability to connect genomic responses to environmental change. Using a combination of Oxford Nanopore long reads, haplotype merging, HiC scaffolding followed by Illumina polishing, we generated a highly contiguous and complete assembly (contigs n = 142, N50 = 21.2 Mb, total length = 607.8 Mb; BUSCOs n = 5,286, single copy complete = 97.8%, duplicated = 0.9%, fragmented = 0.3%, missing = 1.0%). A total of 98% of the assembled genome was placed into 31 chromosomes, which displayed large-scale synteny with other well-characterized lepidopteran genomes. The E. editha genome, annotation, and functional descriptions now fill a missing gap for one of the leading field-based ecological model systems in North America.


Asunto(s)
Mariposas Diurnas , Genoma , Animales , Mariposas Diurnas/genética
14.
Nat Commun ; 13(1): 1233, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264556

RESUMEN

Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a 'supergene' on the sex chromosome. Here, we phenotype and genotype four guppy 'Iso-Y lines', where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis.


Asunto(s)
Poecilia , Animales , Femenino , Genotipo , Haplotipos/genética , Masculino , Fenotipo , Poecilia/genética , Cromosomas Sexuales
15.
Nat Commun ; 13(1): 755, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136048

RESUMEN

Seasonal plasticity is accomplished via tightly regulated developmental cascades that translate environmental cues into trait changes. Little is known about how alternative splicing and other posttranscriptional molecular mechanisms contribute to plasticity or how these mechanisms impact how plasticity evolves. Here, we use transcriptomic and genomic data from the butterfly Bicyclus anynana, a model system for seasonal plasticity, to compare the extent of differential expression and splicing and test how these axes of transcriptional plasticity differ in their potential for evolutionary change. Between seasonal morphs, we find that differential splicing affects a smaller but functionally unique set of genes compared to differential expression. Further, we find strong support for the novel hypothesis that spliced genes are more susceptible than differentially expressed genes to erosion of genetic variation due to selection on seasonal plasticity. Our results suggest that splicing plasticity is especially likely to experience genetic constraints that could affect the potential of wild populations to respond to rapidly changing environments.


Asunto(s)
Adaptación Fisiológica/genética , Empalme Alternativo , Mariposas Diurnas/fisiología , Genes de Insecto/genética , Estadios del Ciclo de Vida/genética , Animales , Evolución Biológica , Femenino , Variación Genética , Modelos Genéticos , Estaciones del Año , Transcripción Genética
16.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012980

RESUMEN

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/efectos de la radiación , Genes de Cambio , Iridiscencia/genética , Azufre/química , Rayos Ultravioleta , Animales , Sistemas CRISPR-Cas/genética , Cromosomas/genética , Genes de Insecto , Sitios Genéticos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Iridiscencia/efectos de la radiación , Masculino , Conducta Sexual Animal/fisiología , Especificidad de la Especie , Simpatría/genética , Alas de Animales/metabolismo
17.
Mol Ecol ; 31(4): 1269-1280, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862690

RESUMEN

Diapause is a common adaptation for overwintering in insects that is characterized by arrested development and increased tolerance to stress and cold. While the expression of specific candidate genes during diapause have been investigated, there is no general understanding of the dynamics of the transcriptional landscape as a whole during the extended diapause phenotype. Such a detailed temporal insight is important as diapause is a vital aspect of life cycle timing. Here, we performed a time-course experiment using RNA-Seq on the head and abdomen in the butterfly Pieris napi. In both body parts, comparing diapausing and nondiapausing siblings, differentially expressed genes are detected from the first day of pupal development and onwards, varying dramatically across these formative stages. During diapause there are strong gene expression dynamics present, revealing a preprogrammed transcriptional landscape that is active during the winter. Different biological processes appear to be active in the two body parts. Finally, adults emerging from either the direct or diapause pathways do not show large transcriptomic differences, suggesting the adult phenotype is strongly canalized.


Asunto(s)
Mariposas Diurnas , Diapausa , Animales , Mariposas Diurnas/genética , Diapausa/genética , Fenotipo , Pupa/genética , Transcriptoma/genética
18.
Mol Ecol ; 31(5): 1461-1475, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931388

RESUMEN

Many insects exhibit geographical variation in voltinism, the number of generations produced per year. This includes high-latitude species in previously glaciated areas, meaning that divergent selection on life cycle traits has taken place during or shortly after recent colonization. Here, we use a population genomics approach to compare a set of nine Scandinavian populations of the butterfly Pararge aegeria that differ in life cycle traits (diapause thresholds and voltinism) along both north-south and east-west clines. Using a de novo-assembled genome, we reconstruct colonization histories and demographic relationships. Based on the inferred population structure, we then scan the genome for candidate loci showing signs of divergent selection potentially associated with population differences in life cycle traits. The identified candidate genes include a number of components of the insect circadian clock (timeless, timeless2, period, cryptochrome and clockwork orange). Most notably, the gene timeless, which has previously been experimentally linked to life cycle regulation in P. aegeria, is here found to contain a novel 97-amino acid deletion unique to, and fixed in, a single population. These results add to a growing body of research framing circadian gene variation as a potential mechanism for generating local adaptation of life cycles.


Asunto(s)
Mariposas Diurnas , Relojes Circadianos , Diapausa , Aclimatación , Animales , Mariposas Diurnas/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Fotoperiodo
19.
Nat Commun ; 12(1): 5717, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588433

RESUMEN

The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.


Asunto(s)
Distribución Animal , Biodiversidad , Mariposas Diurnas/fisiología , Clima Tropical , Animales , Extinción Biológica , Genes de Insecto , Especiación Genética , Geografía , Filogenia , Análisis Espacio-Temporal
20.
Mol Biol Evol ; 38(12): 5782-5805, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34469576

RESUMEN

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.


Asunto(s)
Drosophila melanogaster , Metagenómica , Animales , Drosophila melanogaster/genética , Frecuencia de los Genes , Genética de Población , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...